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a b s t r a c t

The hyperfine group method is considered as the most accurate resonance self-shielding method, but it
suffers some limitations in the practical calculation due to its long computation time. In order to make it
practical to use the hyperfine group method in large scale geometry problems, a cross section interpola-
tion method is proposed in the frame of the newly developed global-local self-shielding method. In this
paper, a series of typical 1-D pin cells are established by varying the Dancoff correction factor, burnup
depth and fuel temperature. The hyperfine group method is just performed to these typical pin cells,
and the cross sections of the realistic pin cells are obtained by interpolating according to the real values
of these parameters. By this method, the times of the hyperfine group method needed to be performed is
greatly reduced. This method has a very high accuracy in practical assembly and whole-core physics
calculation.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In the deterministic nuclear reactor physics analysis, the multi-
group treatment for the energy variable in neutron transport equa-
tion is a basic technique to make the transport calculation feasible.
Consequently, the resonance self-shielding calculation is necessary
to obtain the multi-group effective cross sections in the resonance
energy range, and its accuracy has important impact on the follow-
ing transport calculation. The resonance self-shielding calculation
is a complicated work, due to the phenomena caused by the shar-
ply varied resonance cross sections, including the spatial self-
shielding effect, Doppler effect and interference among different
resonant isotopes. In order to simplify the calculations, the above
mentioned effects are usually approximately treated in the con-
ventional resonance self-shielding methods.

The equivalence theory (Stamm’ler and Abbate, 1983) and sub-
group method (Nikolaev et al., 1970) are the widely used reso-
nance self-shielding methods in the modern lattice physics
codes, due to their high computation efficiency. In the equivalence
theory, the fuel is treated as a lump, so only the average cross sec-
tions over the whole fuel rod can be obtained. In order to account
for the spatial self-shielding effect in the fuel rod, the Space-
Dependent Dancoff Method (SDDM) is proposed by Matsumoto
et al. (2005), and then it is extended to account for the radial tem-
perature distribution within a fuel rod (Matsumoto et al., 2006). In
the subgroup method, the spatial self-shielding effect can be
directly treated by solving the subgroup transport equation with
fine spatial meshes in the fuel rod, however, it is hard to treat
the nonuniform temperature distribution in the fuel rod. For this
reason, the weight adjustment scheme and number density adjust-
ment scheme are proposed to solve this problem (Joo et al., 2005;
Jung et al., 2016; Wemple et al., 2007). A partial cross section fit-
ting scheme is proposed to treat the nonuniform temperature by
fitting cross sections at different temperatures as partial cross sec-
tions (He et al., 2018). Moreover, the equivalence theory and sub-
group method suffer a long-standing issue, i.e. the resonance
interference effect (Williams, 1983). The Bondarenko iteration
method is the common method to treat the resonance interference
effect, and an alternative is the resonance interference factor (RIF)
method (Williams, 1983). Recently, a new method called pseudo-
resonant isotope method has been proposed by the research group
of the authors (Zu et al., 2016), where the resonance integral (RI)
table of a mixture of resonant isotopes is used instead of providing
individual RI table for each isotope, and the interference effect is
inherently included in RI table.

In order to enhance the safety and economy of nuclear reactors,
the neutronics analysis with higher accuracy has long been pur-
sued, either in the conventional nodal diffusion based methods,
or in the whole-core direct neutronics simulation. Therefore, more
accurate resonance self-shielding method should be researched to
satisfy various demands. The hyperfine group method is consid-
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Fig. 1. Multi-group effective absorption cross sections of group 27 for U-238 versus
Dancoff correction factors.

Fig. 2. Multi-group effective absorption cross sections of group 27 for U-238 versus
Dancoff correction factors at the burnup of 40 GWd/tU.
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ered as the most accurate resonance self-shielding method. In the-
ory, the hyperfine group method can avoid all the drawbacks of
equivalence theory and subgroup method, by directly solving the
neutron slowing-down equation using hyperfine group cross sec-
tions of each isotope at the realistic temperature within each spa-
tial mesh. However, a large computational resource is required to
perform hyperfine group resonance calculation, so that it is hardly
applied to analyze a 2-D problem, such as an assembly or even a 2-
D pin cell, and it is just limited to 0-D or 1-D problem.

In the past, the hyperfine group method was usually used to
produce correction factors to improve the accuracy of conventional
equivalence theory and subgroup method, for example, the RIF is
obtained by performing 0-D hyperfine group calculations.
Recently, some efforts have been made to directly apply the hyper-
fine group method to produce effective self-shielded cross sections
for a large scale problem. The present paper will review some
works applying the hyperfine group method, and then propose a
practical method to apply the hyperfine group method to the lat-
tice physics and direct whole-core neutronics simulations.

This paper is organized as follows. In Section 2, the basic
methodology of hyperfine group method is briefly described; some
recent works to improve the hyperfine groupmethod are reviewed,
and then an interpolation method is proposed to enhance the prac-
tical application of the hyperfine group method in the lattice and
whole-core physics simulations. In Section 3, the proposed method
is tested against the several benchmarks. Some conclusions are
given in the last sections.

2. Methodologies

2.1. Hyperfine group method

The continuous energy neutron slowing-down equation in col-
lision probability format is usually used in the hyperfine group
method, which is given as follows:

Rt;iðEÞ/iðEÞVi ¼
X
j

Pj!iðEÞVj

R1
0 Rs;jðE0 ! EÞ/jðE0ÞdE0

þvjðEÞ
R1
0 vRf ;jðE0Þ/jðE0ÞdE0

 !
; ð1Þ

where i is the index of spatial meshes; Rt;iðEÞ is the macroscopic
total cross section; /iðEÞ is the neutron scalar flux; Vi is the volume;
Pj!iðEÞ is the collision probability from region j to i; Rs;iðE0 ! EÞ is
the macroscopic scattering cross section from energy E’ to E; viðEÞ
is the fission spectrum; vRf ;iðE0Þ is the macroscopic production cross
section.

In Eq. (1), the energy variable is discretized into hyperfine
groups, and the energy interval of a group should be narrow com-
pared with the maximum energy lose per scattering of the heaviest
isotope. Therefore, the neutron flux and cross section within a fine
energy group can be thought to be constant. Besides, the fission
source in the resonance energy range can also be ignored without
introducing apparent error. Eq. (1) is leaded to the following form:

Rt;i;fg/i;fgVi ¼
X
j

Pj!i;fgV jSj;fg ; ð2Þ

where fg is the index of hyperfine groups; Rt;i;fg is the macroscopic
total cross section of group fg; /i;fg is the neutron scalar flux of
group fg; Pj!i;fg is the collision probability from region j to i of group
fg; Sj;fg is the scattering source of group fg in region j.

In resonance energy range, it can be assumed that the slowing-
down of neutrons is dominated by the elastic scattering, and the
asymptotic scattering kernel is used to describe the energy distri-
bution of scattered neutrons. The source term Sj;fg in Eq. (2) can
be written as:
Sj;fg ¼
X
k

X
fg0

Res;j;k;fg0/j;fg0DEfg0

1� akð ÞE
�
fg0

ð3Þ

and

ak ¼ Ak � 1
Ak þ 1

� �2

ð4Þ

where k is the isotope index; j is the index of spatial meshes; Res;j;k;fg0

is the macroscopic elastic scattering cross section; /j;fg0 is the neu-
tron scalar flux; DEfg0 is the energy interval of group fg’; Ak is the
mass of nuclide k relative to that of the neutron.

Once the neutron flux of the hyperfine group is obtained, the
multi-group effective cross sections of each nuclide are calculated
by:

rx;i;g ¼
P

fg2g/i;fgrx;i;fgP
fg2g/i;fg

ð5Þ



Fig. 4. Comparison of effective absorption cross section for U-238 of VERA 1C
burnup benchmark with realistic number density and average number density.

Table 1
Temperature profile of test case.

Ring number Radius (cm) Temperatures of case (K)

1 (center) 0.12953 1170
2 0.18318 1110
3 0.22435 1050
4 0.25905 990
5 0.28963 930
6 0.31727 870
7 0.34270 810

T. Zu et al. / Annals of Nuclear Energy 136 (2020) 107045 3
where i is the region index; g is the multi-group index; rx;i;g is the
microscopic multi-group effective cross section of reaction type x;
rx;i;fg is the microscopic cross section of hyperfine group fg.

The hyperfine group method is favorable when the multi-group
effective cross sections of high precision and resolution are desired.
But the practical application of the hyperfine group method is lim-
ited to 0-D or 1-D problem, due to its great demand for computa-
tion resource. There are two main factors affecting the calculation
efficiency. The first is the calculation of collision probabilities
shown in Eq. (2). The collision probability between any two regions
at each energy group should be calculated before solving the
slowing-down equation. For each energy group, the amount of col-
lision probabilities needing to be calculated is proportional to the
square of the region number, so that when the system contains a
large number of spatial meshes, the computational efficiency is sig-
nificantly decreased. Moreover, it is also very complicated to calcu-
late the collision probabilities in a complex geometry. The second
factor is the calculation of scattering source. As shown in Eq. (3),
the scattering source for an energy group is calculated by summing
up the contribution of all the higher energy groups that can trans-
fer into this energy group. The range of the higher energy can be
very large for the light isotopes, especially when the hydrogen is
contained in the material. Thus, the computational cost will be
very large, if the scattering source is directly calculated according
to Eq. (3). Besides, the scattering source should also sum up the
contribution of all the isotopes in the material. In the burnt fuel,
there are hundreds of fission products, so the computational time
will also increase in this case. The following subsections, some
efforts made to apply the hyperfine group method are reviewed,
and a new interpolation method is proposed to enhance the prac-
tical application of the hyperfine group method.
8 0.36636 750
9 0.38858 690
10 (peripheral surface) 0.40960 630
2.2. Treatment of the collision probability

For a specific problem, the collision probabilities among differ-
ent regions can be classified into two categories. The first is the col-
lision probabilities among the subregions within a fuel rod. The
spatial self-shielding effect is taken into account through this type
of collision probabilities. The second is the collision probabilities
between a subregion in a fuel rod and a region outside the fuel
rod including moderator and other fuel rods. This type of collision
probabilities incorporates the shadow effect into the effective cross
sections.

Considering the feasibility, the hyperfine group method is usu-
ally used to treat a 1-D problem. In a 1-D cylindrical fuel pin, if the
Fig. 3. Comparison of kinf of VERA 1C burnup benchmark with realistic number
density and average number density.
fuel pin is divided into multiple rings, the collision probabilities
among different regions can be rigorously calculated using the Car-
lvik method (Carlvik, 1964), based on the realistic temperature and
material composition in each spatial region. In this situation, the
rings are treated as different regions. In the next section, we will
show that when the fuel rod is divided into ten rings, the time
for calculating the collision probabilities is about 4.4 s. If a system
such as an assembly includes hundreds of fuel rods, the time for
the resonance self-shielding calculation is unacceptable. Therefore,
some efforts have been made to enhance the feasibility. A method
is proposed in the work (Liu et al., 2015) to approximately calcu-
late the region-to-region collision probability Pi!jðEÞ when the
non-uniform distribution of material composition and temperature
along the radial direction in the fuel rod is accounted for, as
follows:

Pi!jðEÞ � PTi ;Ci
i!j ðEÞ

1� Pesc;iðEÞ
1� PTi ;Ci

esc;i ðEÞ
ð6Þ

where, PTi ;Ci
i!j ðEÞ is the collision probability from region i to j assum-

ing a uniform temperature and material composition throughout
the whole fuel rod; the Pesc;iðEÞ is the escape probability of a neutron
born in region i, calculated with the realistic temperature profile

and material composition; PTi ;Ci
esc;i is the escape probability of the sit-

uation with a uniform temperature and material composition in the
fuel rod.

In Eq. (6), with the assumption of a uniform temperature and

material composition, the PTi ;Ci
i!j ðEÞ can be calculated in advance

and tabulated as a function of total cross section levels, and then



Table 2
Calculation time for pin cell.

Temperature distribution Number density distribution Total time (s) Pre-process time (s) Source term
calculation time (s)

Collision probability
calculation time (s)

Case 1 No No 0.38 0.22 0.03 0.13
Case 2 Yes No 4.89 0.42 0.03 4.44
Case 3 No Yes 7.11 1.50 1.08 4.53

Table 3
Infinite multiplication factor of VERA 2C benchmark.

Reference kinf Calculated kinf Difference of kinf (pcm)

1.17375 ± 0.00002 1.17482 107
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in the realistic calculation, the values of collision probabilities can
be interpolated according the total cross section of the fuel. This is
very helpful to increase the calculation efficiency.

In order to incorporate the shadow effect, the escape probabil-
ities Pesc;iðEÞ is further expressed as follows:

Pesc;iðEÞ ¼ Re;iðEÞ
Rt;iðEÞ þ Re;iðEÞ ð7Þ

where, Re;iðEÞ is the escape cross section which is gotten by rigor-
ously evaluating Pesc;iðEÞ using Carlvik method based on the realistic
fuel temperature profile and material compositions in an isolated 1-
D pin which is a fuel rod surrounding with infinite moderator, and
then is modified by a factor to incorporate the shadow effect (Liu
et al., 2015).

The above procedure is tedious, so that in the lattice code
STREAM (Choi et al., 2017), a different method is used to incorpo-
rate the shadow effect. In this method, Pesc;iðEÞ is evaluated as
follows:

Pesc;iðEÞ ¼ giP
iso
esc;iðEÞ ð8Þ

where, Piso
esc;iðEÞ is the escape probability of subregion i in an isolated

pin; gi is called shadow effect correction factor, and obtained as:

gi ¼
Pesc;FðRt;FÞ
Piso
esc;FðRt;FÞ

ð9Þ
Fig. 5. Geometry of VERA 2C problem.
The Pesc;FðRt;FÞ and Piso
esc;FðRt;FÞ are the escape probabilities respec-

tively for the realistic geometry and the isolated pin. The two
escape probabilities are evaluated using the Carlvik’s two term
rational approximation with assuming a uniform total cross sec-
tion Rt;F in the fuel region. The two term rational expression of
Pesc;FðRt;FÞ involves the Dancoff factor which represents the shadow
effect and is calculated by the neutron current method (NCM)
(Sugimura and Yamamoto, 2006). The NCM just performs one-
group fixed source transport calculations, and it is efficient to get
the Dancoff factor.

Recently, the research group of the authors has proposed a new
method called global-local self-shielding calculation method to
account for the shadow effect (Liu et al., 2018). In this method,
an equivalent 1-D cylindrical pin cell is established to represent
the realistic pin cell in a assembly. The Dancoff correction factor
for each realistic pin cell in the analyzed system is evaluated by
the NCM. After getting the Dancoff correction factor, the equivalent
1-D cylindrical pin cell is established by adjusting the moderator
radius to make the Dancoff correction factor in the two system
equal. The relation between the moderator radius and the Dancoff
correction factor in a 1-D pin cell is as follows:

C ¼ Piso
esc;F � PF!MðRÞ

Rt;F lPF!MðRÞ þ Piso
esc;F � PF!MðRÞ

ð10Þ

where, Piso
esc;F is the escape probability for an isolated fuel rod;

PF!MðrÞ is the collision probability from the fuel to moderator in

the 1-D cylindrical pin cell whose moderator radius is R; Piso
esc;F and

PF!MðrÞ are evaluated with Carlvik method by assuming a uniform
total cross section of Rt;F in the fuel rod; l is the average chord
length of the fuel rod.

In the lattice code GALAXY (Yamaji et al., 2018), a similar
method with that proposed by the authors is used to realize prac-
tical application of the hyperfine group method in the lattice phy-
sics calculations. Besides, in another work of the authors, the
embedded self-shielding method is adopted to establish the 1-D
equivalent 1-D pin cell (Zu et al., 2018). The difference between
global-local self-shielding calculation method and the method pro-
posed by Yamaji et al. (2018) is the method used to calculate Dan-
coff factor. The method proposed by Yamaji et al. (2018) obtains
Dancoff factor by the enhanced neutron current method (ENCM)
and IR approximation. The global-local self-shielding calculation
method obtains Dancoff factor in lattice by NCM and Dancoff factor
in 1-D pin cell by collision probability.

The equivalent 1-D cylindrical pin cells are independent on each
other, so any resonance self-shielding method can be applied to the
equivalent pin cells. Although the hyperfine group method can be
directly carried out on each pin cell, it is still unpractical for a large
scale problem, because there is a large amount of equivalent pin



Fig. 6. Comparison of pin powers for VERA 2C benchmark.

Fig. 7. Comparison of effective cross sections of fuel pin 1 in VERA 2C benchmark. Fig. 8. Comparison of effective cross sections for U-238 of fuel pin 1 in VERA 2C
benchmark.

T. Zu et al. / Annals of Nuclear Energy 136 (2020) 107045 5
cells needing to be calculated. Therefore, in the previous work (Liu
et al., 2018), the sub-group method using a pseudo-resonant-
isotope RI table is adopted to the 1-D pin cells.
2.3. Treatment of the scattering source

For the calculation of the scattering source in Eq. (3), the sim-
plest method is using the narrow resonance (NR) approximation
or intermediate resonance (IR) approximation. However, the previ-
ous work has shown that the NR or IR approximation can introduce
large errors into the multi-group effective cross sections (Zhang
et al., 2015). In the work (Sugimura and Yamamoto, 2007), the
NR approximation is only used in the moderator region, and the
scattering source of fuel regions is rigorously evaluated.

Instead of directly implementing Eq. (3), the scattering source
can be effectively calculated by a recursive formula. In the RMET
code and CENTRMmodule of SCALE, two different recursive formu-
lae are derived based on different energy discretization methods.
In REMT, the energy range is divided into a large number of
equal-lethargy groups (Leszczynski, 1987), while in CENTRM, the
interval of each mesh is non-uniform and problem-dependent
(Williams and Asgari, 1995).

The recursive formulae can significantly reduce the amount of
required computation for the scattering source of a nuclide. How-
ever, in the burnt fuel, there are hundreds of fission products, the
total scattering source should sum up all the nuclides in the fuel.
It also takes a long time in this situation.
2.4. An interpolation method to accelerate the hyperfine group method

As mentioned above, although the Dancoff correction factor
equivalence method can decouple a large system into independent
fuel pins and the recursive formulae can also accelerate the calcu-



Fig. 9. Comparison of effective cross sections for U-235 of fuel pin 1 in VERA 2C
benchmark.

Fig. 10. Comparison of k1vs burnup in VERA 2D benchmark.
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lation of scattering source, it is still need much time if all the inde-
pendent equivalent fuel pins are calculated using the hyperfine
group method. Therefore, an interpolation method is proposed to
reduce the number of times that the hyperfine group calculations
are performed.

For a running reactor, when the operation status is changed,
two parameters will vary and have important impact on the
multi-group effective cross sections, i.e. the fuel temperature and
moderator density. Besides, the material composition of nuclear
fuel is changing during the operation of a reactor, which is another
important factor needing to be considered. Here, it is worth men-
tioning that according to the conventional equivalence theory,
the moderator density directly affects the shadow effect (Knott
and Yamamoto, 2010), so the Dancoff correction factor which is
used to represent the shadow effect in equivalence theory is
applied instead of the moderator density. Therefore, a cross section
interpolation method versus the variables of fuel temperature,
Dancoff correction factor and burnup depth is proposed to reduce
the amount of computation. Taking an assembly problem as exam-
ple, the detailed procedure of the interpolation method is
described as follows.

The NCM is firstly carried out on the assembly to obtain the
Dancoff correction factor for each pin in the system. According to
the range of the values of Dancoff correction factors, several typical
values of the Dancoff factor are chosen to establish the equivalent
1-D pin cells. The equivalent 1-D pin cells with different radius are
constructed by preserving the Dancoff correction factors. In this
step, the fuel temperature and material composition have no
impact on the value of Dancoff correction factor, because the fuel
is treated as black in the NCM, and in the actual calculation, the
total cross section of nuclear fuel is set to be 105 cm�1. After getting
the radius of the equivalent 1-D pin cells, the fuel temperature and
material composition in the fuel rods should be defined before per-
forming the hyperfine group calculations. Here, the fuel tempera-
ture uses the average value of the fuel, and the material
composition also uses the average value determined according to
burnup calculation. As the Dancoff correction factor, several typical
values are respectively chosen for these two parameters according
to the realistic distribution.

Based on the above treatment, a series of typical equivalent 1-D
pin cells are obtained, and then the hyperfine group resonance cal-
culations are carried out on each pin cell. The effective cross sec-
tions of the typical equivalent fuel rods are used to construct an
interpolation table, and the cross sections of all the realistic pin cell
in the assembly are gotten by interpolating the table versus their
Dancoff correction factor, fuel temperature and burnup depth.

There are two factors should be demonstrated here. The first is
the number of the typical values of the three parameters and the
corresponding interpolation methods. In order to illuminate the
relation between the cross sections and interpolation variables,
the VERA 2C benchmark is analyzed. The multi-group structure
used in the present paper is WIMSD 69 group format. The range
of resonance-energy group is from group 13–45. The energy range
of the group 27 is 4 eV � 9.877 eV. The multi-group effective
absorption cross sections of group 27 for U-238 versus Dancoff cor-
rection factors is shown in Fig. 1. It is obvious that the effective
cross section varies linearly with Dancoff correction factors. So
the linear interpolation method is used for the Dancoff correction
factors using three interpolation points. The multi-group effective
absorption cross sections of group 27 for U-238 at 40 GWd/tU ver-
sus Dancoff correction factors is shown in Fig. 2. It can be seen that
the effective cross section varies almost linearly with Dancoff cor-
rection factors and fluctuates slightly because of burnup. So the
linear interpolation method is also used for the burnup depth using
three interpolation points. The square root-linear interpolation is
usually adopted for the fuel temperature (Knott and Yamamoto,
2010), so that this interpolation method is also employed in the
present work. Three interpolation points are chosen in the calcula-
tions, because the average fuel temperature changes slightly in an
assembly.

The second factor is how to get the spatially dependent cross
sections within a fuel rod. The radial distributions of material com-
position and temperature in the fuel pellet, and the spatial self-
shielding effect affect the cross section distribution along the radial
direction. In the above described interpolation procedure, a uni-
form material composition and fuel temperature is assumed to
realize the interpolation scheme of effective cross section. For the
material composition, the numerical results show that if the uni-
form number density is used in the resonance self-shielding calcu-
lation, while the realistic number densities in each subregions is
used in the burnup calculation, the infinity multiplication factor
(kinf) and effective cross section show little deviation from the
results gotten by using the realistic number densities to perform
self-shielding calculation. The VERA 1C benchmark is calculated
to justify this phenomenon, and the results are shown in Figs. 3
and 4. In order to show the effect of using a uniform number den-
sity to perform the self-shielding calculations on the spatially
dependent cross sections, the fuel rod is divided into 10 rings by
equal volume. It can be seen that the difference of kinf is less than
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30 pcm, and the absolute values of the differences of effective cross
sections are less than 0.6%. Therefore, the uniformmaterial compo-
sition is used in the resonance self-shielding calculation. For the
fuel temperature, if the fuel temperature profile in a fuel rod is con-
sidered in the resonance self-shielding calculation, each ring
should be treated as a different region, so that it will take much
time to calculate the collision probabilities. Therefore, the fuel
temperature distribution is not considered in the present paper,
and the effective fuel temperature is used in the calculations. As
for the spatial self-shielding effect, the spatially dependent cross
sections within a fuel rod can be obtained by the proposed interpo-
Fig. 11. Comparison of pin powers at 0

Fig. 12. Comparison of pin powers at 60
lation method, after the spatially dependent cross sections are
obtained in the typical equivalent pin cells.
3. Numerical results

The above described method has been implemented into the
high-fidelity neutronics code NECP-X (Chen et al., 2018) developed
by the authors’ group. In NECP-X, the widely used 2D/1Dmethod is
adopted for the transport calculation, and the 2D transport calcu-
lation is performed using the method of characteristics (MOC).
The MOC solver is used for the Dancoff correction factor calculation
GWd/tU for VERA 2D benchmark.

GWd/tU for VERA 2D benchmark.



Fig. 13. Geometry of VERA 2C benchmark with temperature distribution.

Table 4
Infinite multiplication factor of VERA 2C benchmark with temperature distribution.

Reference kinf Calculated kinf Difference of kinf (pcm)

1.18133 ± 0.00005 1.18272 139
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in the present paper. The lethargy width of hyperfine group calcu-
lation is 0.00025. The ENDF/B-VII.0 is used for the hyperfine energy
library and multi-group library generation.
Fig. 14. Comparison of pin powers for VERA 2C
3.1. 1-D pin cell problem

In this subsection, three different 1-D pin cell problems are cal-
culated to analyze the computation time of the hyperfine group
method in different situations. Firstly, the fuel temperature, mate-
rial and configuration are set as VERA 1C benchmark. In this case,
the fuel temperature and material composition in fuel rod are con-
stant, nevertheless, the fuel rod is subdivided into 10 rings with
equal volume to show the time to get spatially dependent cross
sections. Secondly, the fuel rod is also divided into 10 rings as case
benchmark with temperature distribution.



Fig. 15. Comparison of effective cross sections of fuel pin 1 in VERA 2C benchmark
with temperature distribution.

Fig. 16. Comparison of k1vs burnup in lattice problem with burnup and different
fuel temperature.
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1, and the rings have different temperature. The temperature pro-
file is shown in Table 1. In this case, the material composition in
the fuel rod is constant. Thirdly, the 10 rings in the second case
are set to have different material composition. The nuclides
included in each ring comes from a burnt nuclear fuel. There are
287 nuclides in the fuel. And the fuel temperature uses an average
value as the first case.

The calculation times for each case are given in Table 2. The Pre-
process time given in the table is the time used by the procedures
except the calculations of source term and collision probabilities,
which includes reading the hyperfine group library, interpolating
the hyperfine group cross sections versus the temperature and so
on. In the first case, the total cross section is constant in the fuel
rod, so that the collision probabilities can be calculated in advance
and stored as the function of the total cross section. Therefore, the
calculation time is the shortest, and it takes 0.38 s to get the spa-
tially dependent cross sections. In the second case, the 10 rings
are treated as different regions, so it takes more time to calculate
the collision probabilities, and the time for the collision probabili-
ties calculation is 4.4 s. In the third case, the there is a large num-
ber of nuclides in the fuel region, and it takes 7.11 s to calculate the
source term. The above results indicate that if the hyperfine group
method is directly used to the cases with radial temperature distri-
bution, or with hundreds of fission products, the calculation time is
unacceptable.

3.2. Lattice benchmark

In this subsection, several lattice problems from VERA bench-
mark (Godfrey, 2014) and VERA burnup benchmark (Kim, 2015)
are tested to show the precision of the interpolation method pro-
posed in this paper.

3.2.1. VERA 2C benchmark
The VERA 2C benchmark is firstly analyzed. The geometry of

VERA 2C benchmark is shown in Fig. 5. In this benchmark, the fuel
temperature is uniform in the assembly, at 900 K. The paper
(Godfrey, 2014) provides the reference results of the infinite mul-
tiplication factor (kinf) and pin power gotten by the Monte Carlo
code KENO. The relative differences kinf and pin power are respec-
tively given in Table 3 and Fig. 6. The maximum difference and root
mean square (RMS) difference of pin power are 0.18% and 0.095%,
respectively. In order to show the accuracy of multi-group effective
cross sections, a fuel pin denoted as pin 1 in Fig. 5 is analyzed. The
reference results of the multi-group effective cross sections in this
paper are obtained by a continuous energy Monte Carlo code. The
statistical error of microscopic cross-sections obtained by the
Monte Carlo code is less than 0.001%. The relative differences of
multi-group effective absorption cross sections for U-238 and
multi-group effective fission cross sections for U-235 in fuel pin
1 are shown in Fig. 7. For U-238, almost all the groups have small
differences less than 1.0% and the maximum difference is 1.2%. For
U-235, all the groups have small differences less than 0.9%. It can
be confirmed from the above results obtained by the hyperfine
group method with the interpolation method can accurately repre-
sent the multi-group microscopic cross sections of 2D lattice
benchmark. The time of resonance calculation is 2.8 s. The problem
is tested on Intel(R) Core(TM) i7-7700 CPU 3.6 GHz processor.

To verify that the proposed interpolation method can obtain
correct spatially dependent cross sections within a fuel rod. The
spatially dependent cross sections in VERA 2C benchmark are also
calculated. The fuel rod is divided into 10 rings by equal volume.
The relative differences of multi-group effective absorption cross
sections for U-238 and multi-group effective fission cross sections
for U-235 in fuel pin 1 are shown in Figs. 8 and 9, respectively. For
U-238, almost all the groups have small differences less than 1.0%
and the maximum difference is 1.6%. For U-235, all the groups have
small differences less than 0.8%. It is obvious that the hyperfine
group method with the interpolation method can accurately repre-
sent spatially dependent cross sections within a fuel rod.
3.2.2. VERA 2D benchmark with burnup
The VERA 2D benchmark is calculated to test performance of

the proposed interpolation method when it is used to problems
with burnup. The reference results of kinf and pin power are from
a Monte Carlo code coupling a burnup calculation code. The differ-
ences of kinf versus burnup depth are shown in Fig. 10. The absolute
value of the maximum difference of kinf is about 140 pcm at 60
GWd/tU. The relative differences of one eighth assembly pin pow-
ers at 0 GWd/tU and 60 GWd/tU are shown in Figs. 11 and 12,
respectively. For pin powers at 0 GWd/tU, the RMS difference
and maximum difference are 0.117% and 0.26%. For pin powers
at 60 GWd/tU, the RMS difference and maximum difference are
0.208% and 0.45%. The pin powers are close to the reference results.

The total time of resonance calculation in the VERA 2D burnup
benchmark with 40 burnup steps is 496.8 s. The problem is tested
on Intel(R) Core(TM) i7-7700 CPU 3.6 GHz processor.



Fig. 17. Comparison of pin powers at 0 GWd/tU for lattice problem with burnup and different fuel temperature.

Fig. 18. Comparison of pin powers at 60 GWd/tU for lattice problem with burnup and different fuel temperature.

Table 5
Infinite multiplication factor and pin power of VERA 5A benchmark.

Reference kinf Calculated kinf Relative difference of kinf (pcm) Relative difference of pin power
(%)

Max RMS

1.00409 ± 0.00001 1.00507 98 1.78 0.57
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3.2.3. Lattice with different fuel temperature
A problem is designed based on VERA 2C benchmark with tem-

perature distribution to test the precision of the interpolation
method when it is used to the case where the fuel temperature
is different in a problem. The temperature distribution of the quar-
ter assembly is shown in Fig. 13. The reference results are from the
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continuous energy Monte Carlo code. Table 4 gives the results of
kinf. The relative differences of one eighth assembly pin powers
are shown in Fig. 14. The maximum difference and root mean
square (RMS) difference of pin power are 0.33% and 0.115%, respec-
tively. A fuel pin signed as pin 1 in Fig. 13 is analyzed. The relative
differences of multi-group effective absorption cross sections for
U-238 and U-235 in fuel pin 1 are shown in Fig. 15. It can be con-
firmed from the results obtained by the hyperfine group method
with the interpolation method reaches a good agreement with
the reference results.

The problem is tested on Intel(R) Core(TM) i7-7700 CPU 3.6 GHz
processor. The time of resonance calculation is 3.8 s.

3.3. Lattice with burnup and different fuel temperature

The burnup calculations are performed to the problem in the
3.2.3 section. The differences of kinf versus burnup depth are shown
in Fig. 16. The absolute value of the maximum difference of kinf is
148 pcm at 42.5 GWd/tU. The difference of kinf is waving in this test
as shown in Fig. 16 and the reason is that the difference of kinf is
caused by two factors at the same time, resonance calculation
method and interpolation. The relative differences of one eighth
assembly pin powers at 0 GWd/tU and 60 GWd/tU are shown in
Figs. 17 and 18, respectively. The pin powers are close to the refer-
ence results. For the pin powers at 0 GWd/tU, the RMS difference
and maximum difference are 0.102% and 0.28%. For the pin powers
at 60 GWd/tU, the RMS difference and maximum difference are
0.167% and 0.51%.

The total time of resonance calculation in this verification with
40 burnup steps is 1362.4 s. The problem is tested on Intel(R) Core
(TM) i7-7700 CPU 3.6 GHz processor.

3.4. Whole-core benchmark

In order to prove the capability of the proposed method to treat
the whole-core problem, a 2D whole-core benchmark, VERA 5A
benchmark, is calculated and analyzed. The problem is tested on
Intel(R) Xeon(R) CPU E5-2620 v3 CPU 2.40 GHz processor with
313 cores in parallel. The results of pin powers and kinf are summa-
rized in Table 5. The calculation time of VERA 5A benchmark is
5.9 s. Multi-level parallel method is implemented in NECP-X,
including space, angular and ray parallel. The space parallel
includes axial domain decomposition and radial region decomposi-
tion, which reduce the resonance calculation time greatly compar-
ing with serial computing. It can be concluded that the hyperfine
group method with the interpolation method has the ability of
whole-core resonance calculation and the computation time is
acceptable.
4. Conclusions

In this paper, some efforts have been made to apply the hyper-
fine group resonance calculation method to the practical lattice
physics or direct whole-core neutronics simulation. An interpola-
tion method is developed in the frame of the global-local self-
shielding calculation method developed by the authors’ group. In
the global-local self-shielding calculation method, the equivalent
1-D cylindrical pin cells are established for the realistic pin cells
in the analyzed system, and the equivalent 1-D cylindrical pin cells
are independent on each other. Although the hyperfine group
method can be applied to each 1-D pin cell, but it is impractical
when the system is large, because there are many 1-D pin cells
needing to be calculated. Therefore, a cross section interpolation
method is developed to reduce the number of times that the hyper-
fine group method is performed when a large scale problem is ana-
lyzed. In this method, a series of typical equivalent 1-D cylindrical
pin cells are established varying the Dancoff correction factor, bur-
nup depth and fuel temperature, and the microscopic multi-group
effective cross sections of the realistic pin cells are obtained by
interpolation versus these three parameters.

The precision of the interpolation method is tested against sev-
eral benchmarks including pin cell benchmark, lattice benchmark
and whole-core benchmark. The numerical results show that the
spatially dependent effective self-shielding cross sections, infinite
multiplication factor and pin power obtained from the hyperfine
group method with the interpolation method agree well with ref-
erence values from the Monte Carlo code. Moreover, the resonance
calculation time is reduced significantly so that the hyperfine
group method can be applied to the practical lattice and whole-
core physics calculation.
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