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A B S T R A C T   

It has been proved that resonance elastic scattering kernel (RESK) has significant impact on the energy and angle 
distributions of the secondary neutrons, and consequently affects the eigenvalues and fuel temperature co
efficients. Therefore, it is necessary for the nuclear data processing codes to generate the accurate data 
considering RESK for the neutronics analysis. In this paper, a processing method is proposed to generate the S(α, 
β, T) tables efficiently for Monte Carlo codes to account for the RESK. A multi-point linearization method is 
developed to generate the incident energy grids of S(α, β, T) tables, which can minimize the data size of S(α, β, T) 
tables without losing accuracy. The equally probable cosines in S(α, β, T) tables are obtained by solving the sets 
of nonlinear equations which are established by Legendre polynomials and the differential moments of RESK. 
The generation procedure of the S(α, β, T) tables is more practical by using the proposed calculation method of 
equally probable cosines. Based on the proposed processing method, a new module is developed in the nuclear 
data processing code called NECP-Atlas. The ACE-format libraries with the S(α, β, T) tables are generated by 
NECP-Atlas and supplied to the OpenMC code to perform the verifications. The numerical results show that the 
impact on eigenvalues caused by the RESK can be reflected correctly by the Monte Carlo calculations using the S 
(α, β, T) tables. Meanwhile, the results based on the S(α, β, T) tables match well with those based on the Doppler 
broadening rejection correction approach.   

1. Introduction 

In the epi-thermal energy range, the thermal agitation of target 
nuclei will cause up-scattering of the secondary neutrons, in other 
words, it has important impact on the energy and angle distributions of 
secondary neutrons, i.e. the scattering kernels. Especially, for the heavy 
nuclides with strong resonance elastic scattering within the epi-thermal 
energy range, the scattering kernels are deeply dependent on the reso
nance structures. The scattering kernel affected by the resonance elastic 
scattering is known as the resonance elastic scattering kernel (RESK) 
(Ouisloumen and Sanchez, 1991). RESK has a great impact on the 
neutronics simulations, which leads the eigenvalues, fuel temperature 
coefficients and other neutronics parameters quite different from those 
based on the conventional asymptotic scattering kernel (Dagan, 2005; 
Becker et al., 2009; Mori and Nagaya, 2009; Zoia et al., 2013). There
fore, the nuclear data processing codes, which are used to generate cross 
section libraries for the neutronics simulation codes, should provide 
accurate RESK data. 

For the deterministic based neutron analysis, the multi-group cross 

sections and scattering matrices are required in the neutron transport 
calculations. Besides the scattering matrices which are affected by RESK, 
the multi-group cross sections can also be affected, since the neutron 
energy spectra used as the weighting functions to evaluate the cross 
sections are changed when RESK is considered. Some researchers have 
proposed several methods to account for RESK in the calculation of the 
multi-group data including cross sections and scattering matrices. In the 
works (Lee et al., 2008; He et al., 2016), the correction factor method is 
applied to correct the multi-group data, where the correction factors are 
generated by the Monte Carlo codes which can accurately treat RESK. In 
the works (Ghrayeb et al., 2014; Ouisloumen et al., 2015), the accurate 
scattering matrices are provided by directly integrating the formulae of 
RESK (Ouisloumen and Sanchez, 1991) with the numerical methods, 
and the ultra-fine group structure (more than 6000 groups) is used to 
reduce the effect of RESK on weighting functions. Besides, a method has 
been developed by the authors of the present paper (Xu et al., 2019), 
which can calculate the scattering matrices based on the 
two-dimensional interpolation tables of RESK, and the multi-group cross 
sections using the neutron energy spectra considering up-scattering 
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effect. In this method, a relatively coarse multi-group structure such as 
EPRI-CPM-69 group structure can be used to generate multi-group data 
with high accuracy. 

For Monte Carlo codes, there are two methods having been used to 
account for RESK in the neutron transport simulation. One is using the 
Doppler broadening rejection correction (DBRC) approach and the other 
is using the S(α, β, T) tables. The DBRC approach is a sampling method 
used for exactly simulating the elastic collision between neutrons and 
target nuclei (Becker et al., 2009; Becker, 2010; Dagan et al., 2011; 
Walsh et al., 2014). The DBRC approach needs to be implemented into 
the Monte Carlo codes so that the correct energy and angle distributions 
of secondary neutrons can be simulated in the Monte Carlo calculations. 

For the Monte Carlo (MC) codes with the DBRC approach unavai
lable, the S(α, β, T) tables is an alternative method to consider RESK. The 
initial purpose of using the S(α, β, T) tables in the MC calculations is to 
capture the scattering kinematics of neutrons scattered from the bound 
molecules such as the hydrogen in water. The S(α, β, T) tables given in 
ACE library includes three key points, i.e. the incident energy grids, the 
scattering kernels of 0th Legendre order for each incident energy and the 
equally probable cosines at each secondary energy. Theoretically, the S 
(α, β, T) tables can also be used to capture the scattering kinematics of 
neutrons in the epi-thermal energy range where RESK is dominant. The S 
(α, β, T) tables were generated initially based on the double differential 
cross sections whose derivation is given by the researchers (Rothenstein, 
2004; Dagan, 2005). Although the methods of generating the S(α, β, T) 
tables (Rothenstein, 2004; Dagan, 2005) have theoretical feasibility, 
there are some limitations when the methods are applied to nuclear data 
processing codes. In the work (Rothenstein, 2004), it is pointed out that 
tremendous piecewise functions must be numerically integrated if the 
converged double differential cross sections are desired. Meanwhile, the 
S(α, β, T) tables are dependent on the temperatures, so it is very 
time-consuming to generate the tables. Besides, the research (Becker, 
2010) has illustrated that the incident energy grid in the S(α, β, T) tables 
should capture the resonance structure of individual nuclide, so that the 
incident energy grid should be carefully set, considering both the effi
ciency and accuracy. While in the work (Dagan, 2005), the generation of 
S(α, β, T) tables was performed on a fixed fine incident energy grid 
depended on the resonance structure of 238U. If the S(α, β, T) tables of 
other heavy nuclides are generated based on the fixed fine incident 
energy grid based on 238U, the accuracy of the S(α, β, T) tables cannot be 
guaranteed. 

In the present work, a processing method is proposed to generate the 
S(α, β, T) tables, which can avoid the limitations mentioned above. 
Firstly, a linearization method called multi-point linearization method is 
proposed to generate incident energy grids of S(α, β, T) tables adaptively 
according to the resonance structures of the target nuclides. The data 
size of S(α, β, T) tables is minimized and the accuracy of S(α, β, T) table 
for any nuclide can be guaranteed. Secondly, a calculation method is 
proposed to calculate the equally probable cosines without utilizing the 
double differential cross sections. The equally probable cosines are ob
tained by solving the sets of equations which are established by the 
Legendre polynomials and the differential moments. The calculation of 
differential moments is based on the analytical and semi-analytical 
integration methods adopted in the previous work (Xu et al., 2019). 
The computational cost of differential moments is much lower than that 
of double differential cross sections based on piecewise integration, 
which can greatly accelerate the generation of S(α, β, T) tables. 

This paper is organized as follows. In Section 2, the processing 
methods are described. In Section 3, the numerical results are demon
strated. The conclusions are given in the last section. 

2. Methodologies 

In this section, the new processing methods for generating the S(α, β, 
T) tables will be introduced. According to the descriptions in the pre
vious section, there are three key points to produce the S(α, β, T) tables, 

i.e. the incident energy grids, the scattering kernels of 0th Legendre order 
at each incident energy and the equally probable cosines at each sec
ondary energy. In the present work, the methods for generating the 
incident energy grids and calculating the equally probable cosines will 
be described, while the calculation method of the scattering kernels of 
0th Legendre order is identical as the previous work (Xu et al., 2019), so 
it will be demonstrated briefly. 

2.1. Brief introduction for the calculation method of the RESK 

The formula of the RESK(Ouisloumen and Sanchez, 1991) is given by 

σT
snðE → E0 Þ ¼

β5=2

4E
expðE = kTÞ

Z ∞

0
tσs;0

�

β
kT
A

t2
�

exp
�
� t2 �A

�
ψnðtÞdt; (1)  

with 

β¼ðAþ 1Þ =A; (2)  

where t is a variable proportional to the neutron speed; σs,0 is the 
tabulated 0 K cross section; k is Boltzmann’s constant; T is the temper
ature of the material; A is the ratio of the nucleus mass to the mass of the 
neutron. 

2.2. Then, the ψnðtÞ is represented as 

ψnðtÞ ¼ Hðtþ � tÞHðt � t� Þ;

�

Z tþεmin

εmax � t
exp
�
� x2�Qnðx; tÞdxþ Hðt � tþÞ

�

Z tþεmin

t� εmin

exp
�
� x2�Qnðx; tÞdx

(3)  

with 

t� ¼
εmax � εmin

2
; (4)  

and 

εmax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ 1ÞmaxðE;E0 Þ=kT

p
; (5)  

εmin¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ 1ÞminðE;E0 Þ=kT

p
: (6)  

where H is the Heaviside step function. 

2.3. Finally, Qnðx; tÞ is given by 

Qnðx; tÞ¼
4
ffiffiffi
π
p

Z 2π

0
PnðμlabÞPðμCMÞdφ; (7)  

where 

μCM ¼
1

4x2t2 ðAþB cos φÞ; (8)  

and 

μlab¼
1

4x2εmaxεmin
ðCþB cos φÞ; (9)  

with 

A¼
�
ε2

max � x2 � t2�� ε2
min � x2 � t2�; (10)  

C¼
�
ε2

maxþ x2 � t2�� ε2
minþ x2 � t2�; (11)  

and 
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B ¼
�
ðt þ xÞ2 � ε2
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��
ðt þ xÞ2 � ε2

min

�
:

�
�
ε2

max � ðt � xÞ2
��

ε2
min � ðt � xÞ2

� (12) 

From the above formulae, it can be observed that Eq. (1) is a triple 
integral. For the third fold of the integral (i.e. Eq. (7)), it is evaluated 
analytically. For the second fold of the integral (i.e.Eq. (3)), it is eval
uated based on different Legendre orders. For the first two orders, the 
second fold of integral can be represented as a relatively simple 
analytical expression. For the higher orders, the analytical expression is 
quite complicated, so the integral is evaluated numerically. As for the 
first fold of the integral, the integral is calculated by using piece-wise 
numerical integration. 

2.4. Generation method of the incident energy grid 

In the previous section, it is demonstrated that the S(α, β, T) tables 
should be generated on particular incident energy grids in order to 
capture the resonance structure of individual nuclide. Based on the 
numerical analysis, it is observed that the shapes of scattering kernels 

vary drastically when the incident energies are close to the resonance 
peaks, and vary smoothly when the incident energies are away from the 
resonance peaks. Fig. 1 shows 5 scattering kernels of 0th Legendre order 
of 238U at 293.6 K for the incident energies of 6.50 eV, 6.60 eV, 6.70 eV, 
6.80 eV and 6.90 eV. Each dashed line represents an individual scat
tering kernel and the points constructing the lines are the scattering 
probabilities. These 5 incident energy points are close to 6.67 eV where 
the first s-wave resonance peak of 238U is located. It can be observed that 
the shapes of the scattering kernels at different incident energies change 
drastically. Fig. 2 shows 4 scattering kernels of 0th Legendre order of 
238U at 293.6 K for the incident energies of 10.00 eV, 10.50 eV, 11.00 eV 
and 11.50 eV, and these 4 incident energy points are away from the first 
(6.67 eV) and second (20.87 eV) s-wave resonance peaks. It can be 
noticed that the shapes of the scattering kernels change smoothly, and 
the values of self-scattering probabilities (the highest point on each 
dashed line in Fig. 2) show linear relationship with incident energies 
(the green solid line in Fig. 2). It means that it is unnecessary to use too 
much incident energy points in the region where no resonance peaks are 
located, and several scattering kernels can represent their variation 
trend. Based on this point, a linearization method was proposed in the 
previous work (Xu et al., 2019), where the incident energy grid is ob
tained by linearizing the values of self-scattering probability with a 
given tolerance. Fig. 3 shows the self-scattering probabilities of 0th 

Legendre order of 238U at 900 K for the incident energy from 1E-5 
eV–100 eV. And the incident energy points corresponding to the 
self-scattering probabilities construct the incident energy grid. The po
sitions where the curve changes drastically are energy points where the 
first five s-wave resonance peaks are located. At the positions around the 
resonance peaks, the incident energy points are relatively fine due to the 
fast change of the scattering kernels as mentioned above. Away from the 
resonance peaks, the incident energy points are relatively sparse. 

The above linearization method can guarantee the precision of 
interpolated scattering probabilities near the incident energy. During 
our farther research, a phenomenon is found that the precision of scat
tering probabilities obtained by interpolation may decrease when the 
secondary energies are away from the incident energy. And this phe
nomenon only happens when the incident energy is relatively low. Fig. 4 
and Fig. 5 show the comparisons of the scattering probabilities of 238U at 
900 K for the incident energy of 2E-5 eV and 4E-5 eV, respectively. It can 
be seen that the values of interpolated scattering probabilities cannot 
match with those obtained by theoretic calculation. The numerical re
sults shows that the eigenvalues and temperature coefficients are hardly 

Fig. 1. The scattering kernels of 0th Legendre order of 238U for the incident 
energy from 6.50 eV to 6.90 eV. 

Fig. 2. The scattering kernels of 0th Legendre order of 238U for the incident 
energy from 10.00 eV to 11.50 eV. 

Fig. 3. The self-scattering probabilities of 0th Legendre order of 238U at 900 K 
for the incident energy from 1E-5 eV–100 eV. 
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affected despite of the large interpolation error shown in Figs. 4 and 5. 
But for the nuclear data processing, this kind of phenomenon indicates 
that the robustness of the above linearization method is not strong. 
Therefore, to enhance the robustness of the above linearization method 
and avoid the potential error, we propose a new linearization method. 

The new linearization method is called multi-point linearization 
method and it not only makes the self-scattering probability can be 
linearly interpolated with a given tolerance, but also the scattering 
probabilities at other secondary energy points. In the multi-point line
arization method, more secondary energy points are set to judge 
whether the interpolated values of scattering probabilities match with 
the theoretic calculation results under the given tolerance. In order to 
define the energy points used for judgement, the area of the secondary 
energy is divided into two parts: the down-scattering part and up- 
scattering part. Several energy points are set in each parts, and the 
numbers of the secondary energy points located in both parts are the 

same. Besides, the incident energy point is also used to judge the 
convergence. In the down-scattering part, the logarithmic energy 
decrement Δudown from incident energy E to the minimum secondary 
energy E’

min is defined as 

Δudown ¼ ln
�

E
E’

min

�

; (13)  

where E’
min is derived based on the two-body kinematics assuming the 

target velocity follows Maxwellian distribution. Then, Δudown is divided 
into N equal widths and there are N-1 points of division defined as the 
secondary energy points in the down-scattering part. The secondary 
energy points in the down-scattering part are represented as 

E
0

down;L ¼
E

exp
�

Δudown
N

�
⋅L
; L¼ 1; 2;…;N � 1; (14)  

where E’
down;L is the Lth secondary energy point in the down-scattering 

part. 
Similarly, in the up-scattering part, the logarithmic energy decre

ment Δuup from the maximum secondary energy E’
max to the incident 

energy E is defined as 

Δuup¼ ln
�

E’
max

E

�

; (15)  

where E0max is derived based on the two-body kinematics assuming the 
target velocity follows Maxwellian distribution. Then, Δuup is divided 
into N equal widths and there are N-1 points of division defined as the 
secondary energy points in the up-scattering part. The secondary energy 
points in the up-scattering part are represented as 

E
0

up;L¼E ⋅ exp
�Δuup

N

�
⋅ L; L¼ 1; 2;…;N � 1; (16)  

where E’
up;L is the Lth secondary energy point in the up-scattering part. 

Take Fig. 6 as example, there are one secondary energy point defined 
in the down-scattering part and up-scattering part, respectively. There 
are three secondary points in all used for linearization judgement (i.e. 
the points where the blue lines cut the abscissa). The blue circles 
represent the scattering probabilities corresponding to the secondary 
energies. 

After describing the method for setting secondary energy points to 
check the interpolation error, the linearization process is performed, as 

Fig. 4. The comparison of the scattering probabilities of 238U for the incident 
energy of 2E-5 eV. 

Fig. 5. The comparison of the scattering probabilities of 238U for the incident 
energy of 4E-5 eV. 

Fig. 6. The definition of the secondary energies for multi-point linearization.  
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the following steps. 

1) Set an initial incident energy grids to divide the whole incident en
ergy range into a series of intervals. In general, it is obtained from the 
energy grids of the tabular cross sections at 0 K.  

2) Check whether the linearization tolerance is satisfied for the energy 
intervals one by one from low energy to high energy. In each energy 
interval, the middle energy are set as the incident energies, and the 
other secondary energy points are defined based on the method 
described above. And then calculate the values of scattering proba
bilities at the secondary energy points. Interpolate the values of 
scattering probabilities at the same secondary energy points using 
the special projection interpolation scheme (Muir and Boicourt, 
2016). The special projection interpolation scheme is introduced 
briefly as follows. For a given incident energy E and secondary en
ergy E0, the scattering probability PðE →E0 Þ is represented as 

PðE → E’Þ¼P
�
E1 → E’

1

�
þ
�
E
0

� E’
1

�
⋅
P
�
E2→E’

2

�
� P

�
E1→E’

1

�

E’
2 � E’

1
; (17)  

with 

E � E0 ¼ E1 � E01 ¼ E2 � E02: (18)  

where E1 is the incident energy lower than E; E2 is the incident energy 
higher than E; The secondary energies E’

1 and E’
2 are calculated using Eq. 

(18). For each energy interval, E1 equals to the energy of its lower 
boundary and E2 equals to the energy of its upper boundary.  

3) If the relative error of interpolated probabilities exceeds the given 
tolerance, the middle incident energy of this energy interval will 
subdivide this energy interval into two energy intervals. Then, Step 2 
is repeated.  

4) If the relative error of interpolated probabilities is under the given 
tolerance for this energy interval which is not generated in Step 1, 
the lower boundary of this energy interval will be stacked into the 
final incident energy grid of the S(α, β, T) table. Then, skip to the next 
energy interval and Step 2 is repeated until all the energy intervals 
are exhausted.  

5) If the relative error of interpolated probabilities is under the given 
tolerance for this energy intervals which is generated in Step 1, the 
upper boundary of this energy interval will be extended to the next 
energy point which is the upper boundary of the next energy interval. 
Then, Step 2 is repeated. The motivation for this operation is to 
remove the redundant incident energy points from the initial energy 
grids to reduce the data size of the S(α, β, T) table. 

After the final incident energy grid of the S(α, β, T) table is generated, 
the scattering kernels of different Legendre orders for each incident 
energy are evaluated using a semi-analytical integration method (Xu 
et al., 2019). 

2.5. Calculation method of the equally probable cosines 

In this section, the calculation method of the equally probable co
sines is demonstrated. First of all, the conventional method of calcu
lating equally probable cosines is described in order to explain the 
proposed method clearly. 

The double differential cross section can be expanded using the 
Legendre polynomials. It is given as 

σðE → E0 ; μÞ¼
X∞

n¼0

2nþ 1
2

σnðE → E0 ÞPnðμÞ; (19)  

where σðE →E0 ; μÞ is the double differential cross section; σnðE →E0 Þ is the 
scattering kernels of nth Legendre order; PnðμÞ is the Legendre poly
nomial. Since Eq. (19) is represented as the form of polynomial 

expansion, σnðE →E0 Þ can also be called differential moment. For the 
convenience of description, the “scattering kernel” is described as “dif
ferential moment” in this section. 

According to the orthogonality of Legendre polynomials, the differ
ential moments of nth Legendre order are represented as 

σnðE → E0 Þ ¼
Z 1

� 1
σðE → E0 ; μÞPnðμÞdμ: (20) 

In the conventional method of calculating equally probable cosines, 
the order of Legendre polynomials represented by n in Eq. (20) is set to 
1. Meanwhile, the integral of Eq. (20) is divided by N equally probable 
parts. Thus, Eq. (20) is rewritten as 

σ1ðE → E0 Þ ¼
XN

i¼1

Z

Δμi

σðE → E0 ; μÞμdμ; (21)  

with 
Z

Δμi

σðE → E0 ; μÞdμ¼ 1
N

Z 1

� 1
σðE → E0 ; μÞdμ¼ 1

N
σ0ðE → E0 Þ; (22)  

where Δμi is the ith interval of μ. By using the mean value theorem for 
integrals, Eq. (21) is rewritten as 

σ1ðE→E0 Þ ¼
X

N
i¼1

Z

Δμi

σðE→E0 ; μÞμdμ;

¼
X

N
i¼1μi

Z

Δμi

σðE→E0 ; μÞdμ ¼ σ0ðE→E0 Þ
N

X
N
i¼1μi

(23)  

where μi is the ith equally probable cosine. Therefore, the equally 
probable cosines are calculated by 

μi ¼

R

Δμi
σðE→E0 ; μÞμdμ

R

Δμi
σðE→E0 ; μÞdμ ¼N

R

Δμi
σðE→E0 ; μÞμdμ
σ0ðE→E0 Þ

: (24) 

From the above equations, it can be observed that the double dif
ferential cross sections σðE →E0 ; μÞ are always desired in the conven
tional calculation method. 

In the present work, the calculation of the double differential cross 
sections is avoided. A calculation method is proposed to calculate the 
equally probable cosines by utilizing the differential moments. Ac
cording to the mean value theorem for integrals, Eq. (20) can be rep
resented as 

σnðE → E0 Þ ¼
XN

i
PnðμiÞ

Z

Δμi

σðE → E0 ; μÞdμ¼ σ0ðE→E0 Þ
N

XN

i¼1
PnðμiÞ; (25)  

where μi is the unknown quantities. There are N unknown quantities μi 
which can be solved by N equations. For different Legendre order n, Eq. 
(25) can be rewritten with different form. Thus, these N equations for 
solving μi are obtained by rewritten Eq. (25) from 1st order to Nth order. 

For the case that N equals to 0, the number of equally probable co
sines is given arbitrarily to represent the isotropy of scattering angle. It is 
unnecessary to establish the set of equations and the equally probable 
cosines are obtained directly. 

For the case that N equals to 1, the number of equally probable co
sines is 1. The set of equations is given by 

σ0ðE → E0 Þ ⋅ μ1¼ σ1ðE → E0 Þ: (26) 

For the case that N equals to 2, the number of equally probable co
sines is 2. The set of equations is given by 
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8
>><

>>:

σ0ðE→E’Þ⋅
1
2
ðμ1 þ μ2Þ ¼ σ1ðE→E’Þ

σ0ðE→E
0

Þ⋅
1
2

�
1
2
�
3μ1

2 � 1Þ þ
1
2
�
3μ2

2 � 1Þ
�

¼ σ2ðE→E
0

Þ

; (27)  

where the constraint is 

� 1 < μ1 < μ2 < 1: (28) 

For the case that N equals to 3, the number of equally probable co
sines is 3. The set of equations is given by 

where the constraint is 

� 1 < μ1 < μ2 < μ3 < 1: (30) 

For the case of larger n, the set of nonlinear equations is established 
by using Legendre polynomials to rewrite Eq. (25) from 1st to Nth Leg
endre order in turn. From Eq. (26) and Eq. (29), it can be seen that the 
complexity of the set of nonlinear equations increases as n increases. The 
first two order of equation sets can be solved by the undetermined co
efficient method, and the high order of equation sets can be solved by a 
numerical method such as Newton’s method. 

Fig. 7 gives the differential moments of the first six Legendre order of 
238U for the incident energy of 6.52 eV at 1000 K. It can be seen that the 
absolute values of scattering probabilities from 3rd to higher Legendre 
order are much smaller in comparison to those of 0th Legendre moment, 
which implies that the angular anisotropy of scattered neutrons affected 
by RESK is not very strong. As a result, the maximum Legendre order is 
truncated to the 2nd order in this study. By solving the quadratic 
equation derived from Eq. (27), the final equally probable cosines are 
obtained. 

After the nuclear data processing, the data of S(α, β, T) table is output 
into derived files which are the “point-ENDF” (PENDF) files. The PEDNF 
files can be read by the nuclear data processing codes for generating the 

ACE-format libraries. 

3. Numerical results 

3.1. Performance of the multi-point linearization method 

In this work, 3 secondary points in all are defined in the multi-point 
linearization method, which can be called 3-point linearization method. 
Using the 3-point linearization method, the incident energy grid of the S 

(α, β, T) table for 238U at 900 K has 1333 points from 1E-5 eV–100 eV, 
while there are 817 energy points are generated, when the previous 
linearization method is used. It should be noted that the previous line
arization method is equivalent to the 1-point linearization method. 
Fig. 8 and Fig. 9 show the self-scattering probabilities of 0th Legendre 
order of 238U at 900 K for the incident energy from 1E-5 eV to 1E-2 eV, 
and from 3 eV to 8 eV, respectively. And the incident energy points 
corresponding to the self-scattering probabilities construct the incident 
energy grid of the S(α, β, T) table. 

It can be seen that when the 3-point linearization method is applied, 
the incident energy grid is refined within the thermal energy range and 
the incident energy gird within the epi-thermal energy range keep 
unchanged. 

Meanwhile, the number incident energy points for different number 
of secondary points are listed in Table 1. It can be noticed that the 
number of incident energy points increases when more secondary points 
are set. Consequently, the processing time will increase. The ratio of the 
processing time between 1-point and 3-point linearization method is 
basically equal to that of the number of incident energy points between 
the two methods. 

The scattering kernels for the incident energy of 2E-5 eV and 4E-5 eV 
gotten by the multi-point linearization method are respectively shown in 

Fig. 7. The differential moments of the first six Legendre order of 238U for the 
incident energy of 6.52 eV at 1000 K. Fig. 8. The self-scattering probabilities of 0th Legendre order of 238U at 900 K 

for the incident energy from 1E-5 eV to 1E-2 eV. 

8
>>>>>>><

>>>>>>>:

σ0ðE→E’Þ⋅
1
3
ðμ1 þ μ2 þ μ3Þ ¼ σ1ðE→E’Þ
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1
3

�
1
2
�
3μ1

2 � 1Þ þ
1
2
�
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1
2
�
3μ3

2 � 1Þ
�

¼ σ2ðE→E’Þ

σ0ðE→E’Þ⋅
1
3

�
1
2
�
5μ1

3 � 3μ1Þ þ
1
2
�
5μ2

3 � 3μ2Þ þ þ
1
2
�
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�

¼ σ3ðE→E’Þ

; (29)   
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Fig. 10 and Fig. 11. The interpolated value is obtained using the inter
polation table of scattering kernel based on the 3-point linearization 
method. As shown in Figs. 10 and 11, the absolute value of maximum 
relative error of interpolation for the scattering kernel for the incident 
energy of 2E-5 eV is 0.04%. The absolute maximum relative error of 
interpolation for the scattering kernel for the incident energy of 4E-5 eV 
is 0.21%. The proposed method can guarantee the interpolation preci
sion, and improve the robustness. 

3.2. Verification of the up-scattering probabilities 

The up-scattering probabilities at different incident energies for 
238U, 235U and 238Pu are also compared. The reference solution is given 
by the paper(Ghrayeb et al., 2014). Table 2, Table 3 and Table 4 give the 
comparison of the up-scattering probabilities for 238U, 235U and 238Pu, 

Table 1 
The number incident energy points for different number of secondary points.  

Number of secondary points in multi-point 
linearization method 

Number of incident energy 
points 

1-point linearization method 871 
3-point linearization method 1333  

Fig. 10. The comparison of the scattering kernel of 238U for the incident energy 
of 2E-5 eV. 

Fig. 11. The comparison of the scattering kernel of 238U for the incident energy 
of 4E-5 eV. 

Table 2 
Up-scattering probabilities of238U.  

Incident 
energy(eV) 

Temperature/ 
K 

Up-scattering 
probability- 
Ref./% 

Up-scattering 
probability/% 

Relative 
Diff/% 

6.52 300 62.17 62.28 0.18 
600 82.84 82.83 � 0.01 
1000 84.45 84.32 � 0.15 

7.2 300 16.58 16.50 � 0.48 
600 23.59 23.50 � 0.38 
1000 28.20 28.12 � 0.28  

Table 3 
Up-scattering probabilities of235U.  

Incident 
energy(eV) 

Temperature/ 
K 

Up-scattering 
probability- 
Ref./% 

Up-scattering 
probability/% 

Relative 
Diff/% 

6.0 300 18.71 18.62 � 0.48 
600 25.93 25.85 � 0.31 
1000 30.66 30.59 � 0.23 

6.8 300 17.32 17.23 � 0.52 
600 24.55 24.47 � 0.33 
1000 29.33 29.27 � 0.20  

Table 4 
Up-scattering probabilities of238Pu.  

Incident 
energy(eV) 

Temperature/ 
K 

Up-scattering 
probability- 
Ref./% 

Up-scattering 
probability/% 

Relative 
Diff/% 

18.45 300 20.52 20.21 � 1.51 
600 29.20 28.82 � 1.30 
1000 34.57 34.17 � 1.16 

19.4 300 7.66 7.61 � 0.65 
600 13.48 13.40 � 0.59 
1000 18.54 18.45 � 0.49  

Fig. 9. The self-scattering probabilities of 0th Legendre order of 238U at 900 K 
for the incident energy from 3 eV to 8 eV. 
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respectively. It can be concluded that the up-scattering probabilities 
agree well with the reference. 

3.3. Analysis for the impact on the eigenvalues caused by the higher order 
moments 

According to Fig. 7, the absolute values of the higher order moments 
cannot be ignored. It means that the angular anisotropy of scattered 
neutron at some incident energies are considerable. Therefore, the 
impact on the eigenvalues caused by the higher order moments should 
be analyzed. 

Three sets of ACE libraries are generated, where the S(α, β, T) tables 
are processed based on the moment of the first (0th) order, the first two 
(0th-1st) and the first three (0th-2nd) orders, respectively. The UOX fuel 
problems at 600 K in Mosteller benchmarks are used for the analysis 
(Mosteller, 2006). The results are given in Table 5. It can be seen that the 
eigenvalues based on the moments of the first two (0th-1st) and three 
(0th-2nd) orders are almost same, which means the convergence is 
reached. The eigenvalue of all problems based on the moments of the 
first order are smaller than the converged values about 10 pcm, which 
means that 0th order is not high enough to let the eigenvalues converge. 
Thus, the moments of first three (0th-2nd) orders are sufficient to 
generate the S(α, β, T) tables and ACE libraries. 

3.4. Verification of the S(α, β, T) tables 

The proposed processing method of generating S(α, β, T) tables 
considering the resonance scattering is tested in this subsection. The 
methods described in Section 2 have been implemented into the nuclear 
data processing code NECP-Atlas (Zu et al., 2019). And the S(α, β, T) 

Table 5 
Eigenvalues based on different Legendre orders  

UO2 (wt. %) 0th order 0th-1st orders 0th-2nd orders 

0.71 0.66540 
(0.00005) 

0.66551 
(0.00005) 

0.66550 
(0.00005) 

1.60 0.96043 
(0.00007) 

0.96055 
(0.00006) 

0.96059 
(0.00007) 

2.40 1.09881 
(0.00007) 

1.09896 
(0.00007) 

1.09892 
(0.00007) 

3.10 1.17647 
(0.00008) 

1.17660 
(0.00008) 

1.17668 
(0.00008) 

3.90 1.23928 
(0.00007) 

1.23940 
(0.00007) 

1.23946 
(0.00007) 

4.50 1.27480 
(0.00007) 

1.27487 
(0.00007) 

1.27481 
(0.00007) 

5.00 1.29901 
(0.00008) 

1.29910 
(0.00008) 

1.29910 
(0.00008)  

Table 6 
Comparision of eigenvalues for the Mosteller UOX fuel benchmark at 600 K.  

UO2 (wt. 
%) 

Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

0.71 0.66606 
(0.00005) 

0.66546 
(0.00005) 

0.66550 
(0.00005) 

4 � 56 

1.60 0.96128 
(0.00007) 

0.96059 
(0.00006) 

0.96059 
(0.00007) 

0 � 69 

2.40 1.09954 
(0.00007) 

1.09862 
(0.00007) 

1.09892 
(0.00007) 

30 � 62 

3.10 1.17760 
(0.00008) 

1.17680 
(0.00008) 

1.17668 
(0.00008) 

� 12 � 92 

3.90 1.24030 
(0.00007) 

1.23947 
(0.00007) 

1.23946 
(0.00007) 

� 1 � 84 

4.50 1.27570 
(0.00007) 

1.27483 
(0.00007) 

1.27481 
(0.00007) 

� 2 � 89 

5.00 1.30012 
(0.00008) 

1.29927 
(0.00008)<

1.29910 
(0.00008) 

� 17 � 102  

Table 7 
Comparision of eigenvalues for the Mosteller UOX fuel benchmark at 900 K.  

UO2 (wt. %) Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

0.71 0.66050 
(0.00005) 

0.65956 
(0.00005) 

0.65939 
(0.00005) 

� 17 � 111 

1.60 0.95352 
(0.00007) 

0.95194 
(0.00007) 

0.95199 
(0.00007) 

5 � 153 

2.40 1.09077 
(0.00008) 

1.08889 
(0.00008) 

1.08902 
(0.00008) 

13 � 175 

3.10 1.16828 
(0.00008) 

1.16637 
(0.00007) 

1.16645 
(0.00008) 

8 � 183 

3.90 1.23044 
(0.00008) 

1.22867 
(0.00008) 

1.22856 
(0.00008) 

� 11 � 188 

4.50 1.26583 
(0.00007) 

1.26381 
(0.00007) 

1.26384 
(0.00007) 

3 � 199 

5.00 1.28996 
(0.00008) 

1.28799 
(0.00008) 

1.28799 
(0.00008) 

0 � 197  

Table 8 
Comparision of eigenvalues for the Mosteller Reactor-Recycle MOX fuel 
benchmark at 600 K.  

PuO2 (wt. 
%) 

Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

1.00 0.94724 
(0.00007) 

0.94629 
(0.00007) 

0.94629 
(0.00007) 

� 5 � 100 

2.00 1.02350 
(0.00008) 

1.02220 
(0.00008) 

1.02220 
(0.00008) 

9 � 121 

4.00 1.07867 
(0.00007) 

1.07735 
(0.00007) 

1.07735 
(0.00007) 

10 � 122 

6.00 1.10715 
(0.00007) 

1.10608 
(0.00008) 

1.10608 
(0.00008) 

8 � 99 

8.00 1.13048 
(0.00007) 

1.12938 
(0.00007) 

1.12938 
(0.00007) 

� 13 � 123  

Table 9 
Comparision of eigenvalues for the Mosteller Reactor-Recycle MOX fuel 
benchmark at 900 K.  

PuO2 (wt. 
%) 

Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

1.00 0.93725 
(0.00007) 

0.93536 
(0.00007) 

0.93551 
(0.00007) 

15 � 174 

2.00 1.01249 
(0.00008) 

1.01032 
(0.00008) 

1.01043 
(0.00008) 

11 � 206 

4.00 1.06722 
(0.00007) 

1.06510 
(0.00007) 

1.06492 
(0.00007) 

� 18 � 230 

6.00 1.09543 
(0.00008) 

1.09379 
(0.00008) 

1.09362 
(0.00008) 

� 17 � 181 

8.00 1.11890 
(0.00007) 

1.11685 
(0.00007) 

1.11682 
(0.00007) 

� 3 � 208  

Table 10 
Comparision of eigenvalues for the Mosteller Weapon-Grade MOX fuel bench
mark at 600 K.  

PuO2 (wt. 
%) 

Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

1.00 1.09169 
(0.00007) 

1.09092 
(0.00007) 

1.09106 
(0.00007) 

14 � 63 

2.00 1.18239 
(0.00007) 

1.18129 
(0.00007) 

1.18136 
(0.00007) 

7 � 103 

4.00 1.25115 
(0.00006) 

1.25001 
(0.00007) 

1.24989 
(0.00007) 

� 12 � 126 

6.00 1.28770 
(0.00007) 

1.28673 
(0.00007) 

1.2867 
(0.00007) 

� 1 � 98  
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tables considering the RESK used in the neutronics calculations is 
generated by NECP-Atlas based on ENDF/B-VII.1. 

The Monte Carlo code OpenMC (Romano et al., 2015), which can 
treat the RESK through the DBRC approach, is used as the reference to 
calculate some benchmarks. In order to verify the proposed processing 
method of generating S(α, β, T) tables and show the effect on eigenvalues 
caused by RESK, three different kinds of calculations are performed. The 
first is not using any S(α, β, T) table for all heavy nuclides (denoted as 
Method-1); the second is applying the DBRC approach to all heavy nu
clides (denoted as Method-2); the last is using the S(α, β, T) tables 
generated by NECP-Atlas for all heavy nuclides (denoted as Method-3). 

Two kinds of comparison are performed. One is comparing the dif
ference of eigenvalues between Method-3 and Method-2, which is to 
verify the precision of the proposed method (denoted as Diff.-1); the 
other is comparing the difference between Method-3 and Method-1, 
which is to show the effect on eigenvalues caused by RESK (denoted 
as Diff.-2). 

3.4.1. Mosteller pin-cell benchmark 
The Mosteller benchmarks are calculated, including UOX fuel, 

Reactor-Recycle MOX fuel and Weapon-Grade MOX fuel problems 
(Mosteller, 2006). Two cases of fuel temperature are analyzed, i.e. 600 K 
and 900 K. The results of the eigenvalues for different cases are sum
marized in Tables 6-11. In the tables, From Diff.-1, it is proved that the 
proposed processing method of generating S(α, β, T) can get comparable 
results with DBRC approach. From Diff.-2, it can be seen that the 

Table 11 
Comparision of eigenvalues for the Mosteller Weapon-Grade MOX fuel bench
mark at 900 K.  

PuO2 (wt. 
%) 

Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

1.00 1.08239 
(0.00007) 

1.08042 
(0.00007) 

1.08053 
(0.00007) 

11 � 186 

2.00 1.17143 
(0.00007) 

1.16905 
(0.00007) 

1.16928 
(0.00006) 

23 � 215 

4.00 1.23895 
(0.00007) 

1.23674 
(0.00007) 

1.23689 
(0.00007) 

15 � 206 

6.00 1.27542 
(0.00006) 

1.27325 
(0.00007) 

1.27333 
(0.00007) 

8 � 209  

Table 12 
Comparision of eigenvalues for the BEAVRS benchmark.  

Type of assembly Method-1 Method-2 Method-3 Diff.-1/ 
pcm 

Diff.-2/ 
pcm 

Fuel assembly 1.17363 
(0.00004) 

1.17180 
(0.00004) 

1.17179 
(0.00004) 

� 1 � 183 

Rod-cluster- 
control 
assembly 

0.83398 
(0.00004) 

0.83274 
(0.00004) 

0.83261 
(0.00004) 

� 13 � 137  

Table 13 
Information of the ICSBEP benchmark.  

ICSBEP label Short 
name 

Identification 

PU-SOL-THERM- 
001 

PST001 Pu-Solution-Thermal (Light water-moderated) 

HEU-SOL- 
THERM-001 

HST001 High enriched U-Solution-Thermal (Light water- 
moderated) 

IEU-SOL-THERM- 
004 

IST004 Intermediate enriched U-Solution-Thermal (Light 
water, BeO-moderated) 

MIX-COMP- 
THERM-013 

MCT013 Mixed U, Pu-Compound-Thermal (polyethylene- 
moderated) 

MIX-SOL- 
THERM-003 

MST003 Mixed U, Pu-Solution-Thermal (Light water, 
polyethylene-moderated)  

Table 14 
Comparision of eigenvalues for the ICSBEP benchmark.  

Short name Method-1 Method-2 Method-3 Diff.- 
1/pcm 

Diff.- 
2/pcm 

PST001001 1.00842 
(0.00004) 

1.00836 
(0.00004) 

1.00838 
(0.00004) 

2 � 4 

PST001002 1.00990 
(0.00004) 

1.00983 
(0.00004) 

1.00983 
(0.00004) 

0 � 7 

PST001003 1.01275 
(0.00003) 

1.01261 
(0.00003) 

1.01265 
(0.00004) 

4 � 10 

PST001004 1.00787 
(0.00004) 

1.00763 
(0.00004) 

1.00767 
(0.00004) 

4 � 20 

PST001005 1.01138 
(0.00004) 

1.01112 
(0.00004) 

1.01115 
(0.00004) 

3 � 23 

PST001006 1.01528 
(0.00004) 

1.01493 
(0.00004) 

1.01491 
(0.00004) 

� 2 � 37 

HST001001 0.96118 
(0.00004) 

0.96120 
(0.00004) 

0.96114 
(0.00004) 

� 6 � 4 

HST001002 0.96997 
(0.00004) 

0.96999 
(0.00004) 

0.96990 
(0.00004) 

� 9 � 7 

HST001003 0.99174 
(0.00004) 

0.99176 
(0.00004) 

0.99177 
(0.00004) 

1 3 

HST001004 1.00530 
(0.00004) 

1.00528 
(0.00004) 

1.00530 
(0.00004) 

2 0 

HST001005 0.96571 
(0.00004) 

0.96570 
(0.00004) 

0.96569 
(0.00004) 

� 1 � 2 

IST004001 0.93459 
(0.00004) 

0.93421 
(0.00005) 

0.93422 
(0.00004) 

1 � 37 

MCT013001 1.00478 
(0.00004) 

1.00356 
(0.00004) 

1.00362 
(0.00004) 

6 � 116 

MCT013002 1.00576 
(0.00004) 

1.00444 
(0.00004) 

1.00451 
(0.00004) 

7 � 125 

MCT013003 1.00574 
(0.00004) 

1.00454 
(0.00004) 

1.00454 
(0.00004) 

0 � 120 

MCT013004 1.00593 
(0.00004) 

1.00464 
(0.00004) 

1.00471 
(0.00004) 

7 � 122 

MCT013005 1.00589 
(0.00004) 

1.00464 
(0.00004) 

1.00461 
(0.00004) 

� 3 � 128 

MCT013006 1.00434 
(0.00004) 

1.00309 
(0.00004) 

1.00295 
(0.00004) 

� 14 � 139 

MCT013007 1.00393 
(0.00004) 

1.00262 
(0.00004) 

1.00270 
(0.00004) 

8 � 123 

MCT013008 1.00326 
(0.00004) 

1.00192 
(0.00004) 

1.00193 
(0.00004) 

1 � 133 

MCT013009 1.00168 
(0.00003) 

1.00032 
(0.00004) 

1.00035 
(0.00003) 

3 � 133 

MCT013010 1.00239 
(0.00004) 

1.00101 
(0.00004) 

1.00107 
(0.00004) 

6 � 132 

MCT013011 0.96366 
(0.00004) 

0.96250 
(0.00004) 

0.96251 
(0.00004) 

1 � 115 

MCT013012 1.00035 
(0.00004) 

0.99906 
(0.00004) 

0.99902 
(0.00004) 

� 4 � 133 

MCT013013 1.00254 
(0.00004) 

1.00131 
(0.00004) 

1.00130 
(0.00004) 

1 � 124 

MCT013014 1.00054 
(0.00004) 

0.99924 
(0.00004) 

0.99929 
(0.00004) 

� 4 � 125 

MCT013015 0.99977 
(0.00004) 

0.99852 
(0.00004) 

0.99847 
(0.00004) 

� 1 � 130 

MST003001 1.00516 
(0.00004) 

1.00449 
(0.00004) 

1.00460 
(0.00004) 

11 � 56 

MST003002 0.99649 
(0.00004) 

0.99598 
(0.00004) 

0.99597 
(0.00004) 

� 1 � 52 

MST003003 0.99285 
(0.00004) 

0.99227 
(0.00003) 

0.99232 
(0.00004) 

5 � 53 

MST003004 0.98586 
(0.00004) 

0.98525 
(0.00004) 

0.98526 
(0.00004) 

1 � 60 

MST003005 1.01538 
(0.00004) 

1.01524 
(0.00004) 

1.0152 
0(0.00004) 

� 4 � 18 

MST003006 1.01486 
(0.00004) 

1.01464 
(0.00004) 

1.01465 
(0.00004) 

1 � 21 

MST003007 1.00809 
(0.00004) 

1.0079 
6(0.00005) 

1.00796 
(0.00004) 

0 � 13 

MST003008 1.04477 
(0.00004) 

1.0447 
4(0.00004) 

1.04472 
(0.00004) 

� 2 � 5 

MST003009 1.03754 
(0.00004) 

1.03755 
(0.00004) 

1.03752 
(0.00004) 

� 3 � 2 

MST003010 1.04218 
(0.00004) 

1.04217 
(0.00004) 

1.04213 
(0.00004) 

� 4 � 5  
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eigenvalues decrease to different degrees depending on the fuel types 
and temperature, due to RESK. 

3.4.2. Assembly problems in BEAVRS benchmark 
Two assembly problems in BEAVRS benchmark (Horelik and Her

man, 2012) are calculated including a UO2 fuel assembly with 3.1% 
enrichment and a borosilicate-glass rod-cluster-control assembly with 
the all-control-rod-in condition. The results of the eigenvalues at 900 K 
are represented in Table 12. It is observed that the eigenvalues based on 
the S(α, β, T) tables and those based on the DBRC approach agree well 
with each other, and the eigenvalues decrease greatly for the two types 
of assembly. 

3.4.3. ICSBEP benchmark 
To verify the applicability of the S(α, β, T) tables for the applications 

other than the conventional pressurized water reactor problems, 37 
thermal-spectrum benchmarks in ICSBEP benchmark (OECD-NEA, 
2006) are analyzed. The information of the benchmarks is listed in 
Table 13. To make the effect of RESK on eigenvalues more obvious, the 
temperatures of the materials including heavy nuclides in the bench
marks are set to be 900 K artificially with the geometries and the types of 
materials unchanged. The calculation results are listed in Table 14. From 
Diff.-1, the S(α, β, T) tables has good agreement with DBRC approach. 
From Diff.-2, it can be found that the eigenvalues decrease in varying 
degrees for different benchmarks. 

4. Conclusion 

A new processing method for generating S(α, β, T) tables is proposed, 
which can exactly account for RESK. In this method, a multi-point 
linearization method is developed to improve the precision of the 
values of scattering probabilities at different secondary energies ob
tained by interpolation. The equally probable cosines are evaluated by 
solving the sets of nonlinear equations which are established by the 
differential moments and Legendre polynomials. The S(α, β, T) tables 
generated by the above methods are supplied to the Monte Carlo code 
OpenMC, to analyze the Mosteller pin-cell benchmark, assembly prob
lems in BEAVRS benchmark and ICSBEP benchmarks. The numerical 
results shows that the proposed S(α, β, T) tables can provide comparable 
results with the Doppler broadening rejection correction approach. The 
proposed methods can produce the accurate S(α, β, T) tables in ACE 
format for the Monte Carlo codes to accurately threat RESK without 
modifying the source code of the used Monte Carlo codes. 
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