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A B S T R A C T

Some efforts have been made to exactly consider the effect of neutron up-scattering caused by thermal motion of
target nuclei and resonance elastic scattering on the multi-group cross sections and scattering matrices. Firstly,
the resonance elastic scattering kernel (RESK) formulations for anisotropic scattering up to any Legendre order
has been adopted to represent the exact Doppler broadened energy transfer kernels. A semi-analytical integra-
tion method is applied to perform the RESK calculations. Combining with the RESK calculations, a linearization
algorithm is proposed to generate the RESK interpolation tables. The RESK data can be interpolated precisely
based on the interpolation tables to reduce the calculation burden. Secondly, a neutron slowing-down equation
solver is developed based on the RESK instead of the conventional asymptotic scattering kernel, where the effect
of neutron up-scattering on the neutron energy spectrum can be exactly considered. The accuracy of the multi-
group cross sections and scattering matrices are significantly improved when the exact energy spectrum is ap-
plied for the group collapsing calculations. All the methods mentioned above have been implemented into a
newly developed nuclear data processing code called NECP-Atlas. Numerical results show that the proposed
methods are capable of producing accurate multi-group cross sections for downstream calculations; the fuel
Doppler coefficients and eigenvalues of the real problems will be improved if the up-scattering effect is in-
corporated into the multi-group cross sections and matrices.

1. Introduction

Nuclear data processing plays a significant role in the design and
analysis of nuclear reactors, which transforms the evaluated nuclear
data into a specific format for the downstream calculation codes. NJOY
(Muir and Boicourt, 2016), PREPRO (Cullen, 2017) and AMPX (Wiarda
et al., 2016) et al. are widely used nuclear data processing codes.

One important function of the nuclear data processing codes is
Doppler broadening the 0 K data to other desired temperatures. The
thermal agitation of the target nuclides is considered in the Doppler
broadening process. When a neutron at relatively low energy collides
with heavy nuclides, it has a probability of gaining energy. This phe-
nomenon is known as neutron up-scattering. Besides, some nuclides
have resonance elastic scattering cross sections, which will increase the
probability of neutron up-scattering. Therefore, both the scattering
cross sections and energy transfer kernels should be Doppler broadened.
In the widely used nuclear data processing codes, the scattering cross
sections are usually Doppler broadened with an accurate method, e.g.
Kernel broadening method (Cullen, 1974). However, when the energy
transfer kernel is Doppler broadened, the elastic scattering cross

sections are set to be a constant, ignoring the resonance phenomena of
the elastic scattering cross sections. This approximation is in contra-
diction with the situations that many heavy nuclides have plenty of
resonance peaks, which leads to large error to the Doppler broadened
energy transfer kernels.

To solve the problems mentioned above, the RESK theory was
proposed (Ouisloumen and Sanchez, 1991) to exactly calculate the
exact Doppler broadened energy transfer kernels of different Legendre
orders in a deterministic way. The researchers gave the derivation of
the RESK formulae and the exact Doppler broadened energy transfer
kernels can be evaluated by some integration techniques. Meanwhile,
based on a stochastic method, the improved Doppler broadened rejec-
tion correction (DBRC) approach (Dagan, R. et al., 2011) was proposed
to simulate the exact secondary angular and energy distributions. Since
the energy transferring is caused by the collision between neutrons and
nuclei, it is straightforward to simulate the collision in the Monte Carlo
codes. Additionally, the RESK can be obtained by tallying the secondary
angular and energy distributions calculated by Monte Carlo codes.

According to several researchers (Lee et al., 2008; Ghrayeb et al.,
2011), the exact Doppler broadened energy transfer kernel shows that
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the neutron up-scattering effect is strong in the resonance range. It has
been proved that the exact Doppler broadened energy transfer kernel
had a great impact on the Doppler coefficients and eigenvalues of the
thermal spectrum reactors by several researchers (Dagan, 2005; Becker
et al., 2009; Mori and Nagaya, 2009; Lee et al., 2008; Zoia et al., 2013;
Ghrayeb et al., 2014; Ouisloumen et al., 2015).

Besides the Doppler broadening, another significant function of the
nuclear data processing codes is to generate the multi-group cross
sections and scattering matrices. The multi-group cross sections and
scattering matrices are collapsed from continuous-energy data, and the
weighting flux is very crucial for the generation. In the resonance range,
it is a common practice to solve the neutron slowing-down equation to
obtain the weighting flux. The asymptotic kernel is usually adopted to
establish the neutron slowing-down equation but there are some ap-
proximations for the asymptotic kernel.

The asymptotic kernel assumes that the target nuclei are at rest,
ignoring the thermal agitation of target nuclei. The assumption will
lead to a problem that the resonance elastic scattering cannot have
impact on the energy transfer kernels since there is no Doppler effect
considered in the asymptotic kernel. Therefore, the asymptotic kernel
will introduce large error to the real solution of weighting flux, which
will affect the accuracy of the multi-group cross sections and scattering
matrices consequently. To consider the effects of the thermal agitation
of target nuclei and resonance elastic scattering on the multi-group
cross sections, two kinds of methods have been proposed by several
researchers:

In the first method, the multi-group cross sections calculated based
on the asymptotic kernel is corrected by the correction factors (Lee
et al., 2008; He et al., 2016a,b; Li et al., 2016). The correction factors
are the ratio of the cross sections based on the exact Doppler broad-
ening kernel to those based on the asymptotic kernel. The cross sections
based on the exact Doppler broadening kernel are calculated by Monte
Carlo codes where the DBRC approach (Dagan, R. et al., 2011) is used
to consider the thermal agitation of target nuclei and the resonance
elastic scattering. The multi-group scattering matrices are generated
simultaneously.

In general, the Monte Carlo calculations are very time-consuming.
When the group structure is relatively fine, it needs more simulated
particles to obtain the converged results. Moreover, the repetitive
Monte Carlo calculations are always needed since the correction factors
are dependent with nuclides, temperatures, dilutions and group struc-
tures, which multiplies the computation time.

In the second method, the ultra-fine group structures (∼6000
groups) are used to reduce the effect of neutron energy spectrum on the
effective multi-group cross sections (Ghrayeb et al., 2014; Ouisloumen
et al., 2015). In this method, the multi-group cross sections are gener-
ated based on the asymptotic kernel. The multi-group scattering ma-
trices are generated by integrating the original formulae of the RESK. In
the multi-group scattering matrices generation, the weighting flux is set
to be approximately constant and it is unnecessary to obtain the
weighting flux by solving the neutron slowing-down equation.

The second method cannot handle the broad group structures since
the multi-group cross sections and scattering matrices can be influenced
easily by the shape of weighting flux in the broad energy intervals
where many strong resonance peaks are included. Similarly, for dif-
ferent nuclides, temperatures and group structures, the repetitive in-
tegration calculations are always needed since σsn(E→E′) is computed
from the RESK formulae in the numerical integrations of group col-
lapsing procedures.

It is not practical to apply the first method into the nuclear data
processing codes, because the computations are very time-consuming
when the Monte Carlo code is used. For the second method, ultra-fine
group should be used to reduce the error. However, for most of the
deterministic neutronics codes, it is common to use the broad group
structures. Therefore, the second method has limitations.

In this paper, some efforts have been made to get more accurate

multi-group cross sections and scattering matrices. Firstly, a method to
evaluate the RESK is developed and the moments of RESK at any in-
cident energy and secondary energy can be calculated precisely in a
deterministic way. A new module to process the RESK has been de-
veloped. In this module, a two-dimensional off-line RESK interpolation
table is generated so that the downstream processing modules can get
the RESK data accurately and efficiently. In other words, the energy
transfer kernels are obtained by directly interpolating the RESK inter-
polation tables. Secondly, a neutron slowing-down equation solver is
also developed based on the RESK to avoid the error caused by the use
of asymptotic kernel. Accurate multi-group cross sections and scattering
matrices can be generated based on continuous-energy spectrum taking
account the neutron up-scattering effect. All the methods mentioned
above have been implemented into NECP-Atlas which is a newly de-
veloped nuclear data processing code capable of processing different
evaluated nuclear data files (ENDF) and generating multi-group and
continuous-energy libraries (Zu and Xu, 2018).

In Section 2, the multi-group cross sections and scattering matrices
generation methods considering the exact Doppler broadened energy
transfer kernels are described. In Section 3, the numerical results are
demonstrated. The conclusions are given in the last section.

2. Methodologies

2.1. Theory of the resonance elastic scattering kernel

The effective differential scattering cross section for neutrons of
velocity v in a homogeneous medium at T Kelvin (K) is defined by the
formula (Ouisloumen and Sanchez, 1991)

∫→ ′ = → ′
∞

σ v v
v

v σ v V v M V dV( ) 1 ( , ) ( )s
T

r s
T

( ) (1)

where v′ is the velocity of the scattered neutron; vr is the relative col-
lision velocity; σs(v,V→v′) is the differential scattering cross section for
an individual collision event; MT(V) is the velocity spectrum of target
nuclei.

The effective differential scattering cross section only depends on
incident and secondary energies, E and E′. Therefore, the double dif-
ferential cross section can be represented in terms of a Legendre ex-
pansion in μlab,
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where Pn is the Legendre polynomial of order n; μlab is the scattering
angle in the laboratory frame. The energy transfer moment is given by
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By substituting Eq. (1), Eq. (3) can be rewritten as
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where δ is the Dirac's delta function and P(v,V → v′) is the transfer
kernel for an individual event.

By assuming that MT(V) is a Maxwellian distribution, Eq. (4) re-
duces to the moments for the energy transfer kernel equation
(Ouisloumen and Sanchez, 1991):
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with

= +β A A( 1)/ (7)
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where t is a variable proportional to the neutron speed; σs,0 is the ta-
bulated 0 K cross section; k is Boltzmann's constant; T is the tempera-
ture of the material; A is the ratio of the nucleus mass to the mass of the
neutron.

In this paper, to calculate Eq. (6) accurately and efficiently, it takes
3 basic steps for the calculation procedure.

Firstly, it can be noticed that there is a 0 K cross section term σs,0 in
Eq. (6). By the conventional linearization and resonance reconstruction
methods, the energy grids of tabulated 0 K cross section are re-
constructed. Based on the energy grids, the whole integral interval for
the variable t is discretized into many integral subintervals. A 5-point
Gauss-Legendre quadrature is applied to evaluate the integral of each
subinterval. It is given by

∫

→ ′ = ⋅

× ∑ −

= ⋅

× ∑ ∑ −

=

= =

σ E E β E E kT

t σ βkTt A t A ψ t dt

β E E kT

t σ βkTt A t A ψ t w

( ) /(4 ) exp( / )

( / )exp( / ) ( )

/(4 ) exp( / )

( / )exp( / ) ( )

sn
T

i
N

t
t

i s i i n i i

i
N

k i k s i k i k n i k k

5/2

1 ,0
2 2

5/2

1 1
5

, ,0 ,
2

,
2

,

i
i

,lower
,upper

(8)

where N is the total number of the subintervals, w is the weight of
Gauss-Legendre quadrature.

Furthermore, there may be a situation that the argument of the σs,0
exceeds the domain of it (i.e. βkTt A/i k,

2 <1E-5 eV) since the integration
boundary in Eq. (6) is from zero to infinity. Therefore, the σs,0 are as-
sumed to vary with the 1/v law approximately for this situation.

Secondly, the nth order component of the angular dependence ψn(t)
in Eq. (8) is defined as
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and
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where H is the Heaviside step function.
The integrals in Eq. (9) are also evaluated similar to the integration

methods mentioned above. The integral interval for the variable x is
subdivided into equal intervals.

In particular, to enhance the efficiency of ψn(t) calculations, the first
two orders of ψn(t) are calculated analytically (Ghrayeb et al., 2011).
Combining with the analytical expressions of Qn(x,t), ψ0(t) and ψ1(t) are
defined as
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Thirdly, Qn(x,t) in Eq. (9) is defined as
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In Eq. (18), P(μCM) is the angular distribution which is generally
assumed to have azimuthal symmetry in the center-of-mass frame. An
approximation is induced that the elastic scattering is isotropic
(i.e. =P μ π( ) 1/4CM ) within the thermal and epi-thermal range, which
matches with the descriptions in the File 4 of the ENDF for most nu-
clides. Based on this approximation, Eq. (18) can be evaluated analy-
tically.

Based on these 3 basic steps mentioned above, → ′σ E E( )sn
T in Eq. (6)

is evaluated precisely. The moments for the energy transfer kernels can
be calculated

→ ′ =
→ ′

P E E
σ E E

σ E
( )

( )
( )n

T sn
T

s
T
,0 (24)

whereσ E( )s
T
0 is the Doppler broadened elastic scattering cross section at

T K.

2.2. Generation of the interpolation table

In the numerical integrations of group collapsing procedure, a great
number of kernels ( → ′P E E( )n

T ) are usually desired to evaluate the
accurate group cross sections and scattering matrices. If each

→ ′P E E( )n
T is obtained by the methods demonstrated in Section 2.1, the

total computation cost will be very large. Hence, using the interpolation
tables is a compromise solution, which meets the demand of accuracy
and efficiency simultaneously. More importantly, the interpolation ta-
bles can be reused to generate the group cross sections and scattering
matrices with different dilutions and group structures.

For the motivation mentioned above, a linearization algorithm is
proposed to generate the two-dimensional interpolation tables. The first
interpolated variable is the incident energy and the second is the sec-
ondary energy. Therefore, it is crucial to obtain the proper incident
energy points and the secondary energy points corresponding to each
incident energy point.

A very dense incident energy grids can be adopted but it is inad-
visable. On one hand, the huge number of incident energy points will
increase the memory footprint and the time for looking up data. On the
other hand, the shapes of energy transfer kernels vary slowly against
the incident energy. From Fig. 1, it can be noticed that the shapes of 0th

energy transfer kernel at 4.5 eV, 5.0 eV, 5.5 eV and 6.0 eV change
slowly, which means several energy points can represent the variation
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trends of the transfer kernel. It is unnecessary to set huge amount of
incident energy points.

In Fig. 1, the black solid line is constructed by linking the self-
transfer points at the 4 energy points mentioned above. It can be no-
ticed that the black solid line vary smoothly. So a deduction is made
that the kernels change slowly when the self-transfer points vary
smoothly. As a result, by assuming that the shapes of energy transfer
kernels are closely dependent with the values of self-transfer points, the
energy transfer kernels will be interpolated with the special projection
interpolation scheme (Muir and Boicourt, 2016) if the self-transfer
points are linearly interpolated. Therefore, a linearization method is
proposed to obtain the incident energy grids. The principle of the al-
gorithm is to keep the 0th self-transfer points (i.e. → ′P E E( )T

0 ) linear
within any incident energy interval under the given criteria. Through
this linearization, the incident grids for different nuclides and tem-
peratures are reconstructed. The RESK calculations described in Section
2.1 are only performed at the energy points of the incident energy grids.
The linearization algorithm is decomposed into several steps and shown
in Fig. 2.

At each reconstructed incident energy, the moments of energy
transfer kernels for the different orders are linearized simultaneously on
a single unionized grid by the conventional interval-halving techniques
(Cullen, 2010). It ensures that all orders of the moments are re-
constructed smoothly. Meanwhile, the moments of energy transfer
kernels for the different orders are interpolated simultaneously once the
interpolation interval is found.

An unassigned reaction type number in ENDF-6 format is applied to
store and output the interpolation table of the RESK data and the “MF6
MT300” reaction type is defined. The data structure in ENDF-6 format is
proposed and the data structure is defined in Fig. 3.where HEAD, TAB2,
TAB1, LIST are the standard types of records; ZA, AWR are the standard
material charge and mass parameters; NL is the maximum Legendre
order number of this table; E′ is the secondary energy; P0 indicates the
0th moment of energy transfer kernel and P1 represents the 1st moment
of energy transfer kernel, and so on.

After the processing, the data will be output into derived files which
are the “point-ENDF” (PENDF) files. The reusable PEDNF files can be
used for generating the different multi-group cross sections and scat-
tering matrices faced with the different requirements of dilutions and
energy group structures.

2.3. Solving the neutron slowing-down equation

Generating the multi-group cross sections and scattering matrices is

an important function of nuclear data processing codes. Accurate
weighting flux is needed to evaluate the multi-group cross sections and
scattering matrices.

To obtain the reliable self-shielded weighting flux in the resonance
range, the 0-dimensional neutron slowing-down equation is solved

∫∑ ∑= ′ → ′ ′ ′
= =

∞
Σ E ϕ E P E E Σ E ϕ E dE( ) ( ) ( ) ( ) ( )

i

N

t i
i

N

i s i
1

,
1

0 ,
(25)

where ϕ(E) is the neutron flux, i is the nuclide index; N is the total
number of nuclide types; Σt,i(E) is the macro total cross section; Σs,i(E′)
is the macro elastic scattering cross section; Pi(E′→E) represents the 0th

energy transfer kernel. In the following equations, the superscript of
temperature T for each arguments will be omitted.

The equation is solved from the high energy to low energy point by
point. In this paper, the energy grids for solving are generated by
stacking the energy points of tabular cross sections from each nuclide.
Based on the energy grids, Eq. (25) can be discretized,

Fig. 1. The 0th energy transfer kernels from 4.5 eV to 6.0 eV.

Fig. 2. The schematic diagram of the modified linearization algorithm.

1) Initializing the incident energy grids. In general, it is obtained from the
energy grids of the tabular cross section at 0 K.

2) Checking whether the linearization criteria are satisfied for the energy in-
terval.

3) If the criteria is not met, the conventional interval-halving technique which
is usually used in many processing code will be performed. Then, skipping
to the next energy interval and Step 2 is repeated unless the energy intervals
are exhausted.

4) If the criteria is met, extending the energy interval boundary to the next
energy point and Step 2 is repeated.

Fig. 3. The data structure of the “MF6 MT300” reaction type.
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where M is the total number of energy subintervals.
The cross sections are obtained directly from the PENDF using the

linear-linear interpolation scheme since they are linearized. Meanwhile,
based on the special projection interpolation scheme and the inter-
polation tables mentioned in Section 2.2, the energy transfer kernels are
obtained from PENDF as well. And it is assumed that the flux in each
subinterval is linearly dependent. Therefore, the algebraic precision of
the integral in each subinterval is 3 and 2-point Gauss-Legendre
quadrature is accurate enough to evaluate the integrals in Eq. (26). It
can be written as
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= = = =
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where xk and wk are the node and weight of Gauss-Legendre quadrature
for point k respectively; ′E j1and ′E j2are the lower and upper boundaries
of the energy interval j.

Since the neutron up-scattering effects are considered in the neutron
slowing-down equation, it is necessary to solve the neutron slowing-
down equation iteratively. The Gauss-Seidel iteration strategy is
adopted to solve the neutron slowing-down equation. Eq. (27) com-
bined with Eq. (28)-Eq. (30) can be written as a system of linear
equations,
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It is well known that the initial values near the real solution can help
the iteration converge. It is reasonable to consider that the flux solved
based on the asymptotic kernel is near the real solution. Based on the
asymptotic kernel, the hyper-fine method (Leszczynski, 1987) is
adopted to solve the neutron slowing-down equation efficiently to get
the initial hyper-fine group flux in this paper. In the group collapsing
calculations, the continuous-energy flux is usually used rather than
hyper-fine group flux. As a result, an assumption is made that the
average value of a hyper-fine group flux is equal to the middle point
flux of this hyper-fine group. It is given by

≈ϕ E
ϕ

ΔE
( ) g

g
mid

(32)

where Emid is the middle energy of the hyper-fine group g; ϕg is the
hyper-fine group flux; ΔEg is the energy width of the hyper-fine group.

In summary, the whole solving procedure is decomposed into sev-
eral steps (See Fig. 4).

Thus, the weighting flux with neutron up-scattering effects con-
sidered is obtained and the multi-group cross sections and scattering
matrices are generated.

2.4. Multi-group cross section and matrix generation

Based on the traditional group collapsing methods, the multi-group
cross sections and scattering matrices are generated. The multi-group

cross sections and transfer matrices are represented by,
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where σx(E) is the continuous-energy cross section of reaction x; ϕn(E) is
the continuous-energy weighting flux of order n; Pn(E→E′) is the energy
transfer kernel.

In Eq. (34), Pn(E → E′) for “MF6 MT300” will be interpolated from
the RESK interpolation tables. The trapezoid integration scheme is
adopted for the secondary group collapsing since the data is linear. The
other multi-group cross sections and scattering matrices are generated
by the conventional methods (Macfarlane and Kahler, 2010) including
processing the data in File 3, File 4, File 5 and File 6 of the ENDF (Trkov
et al., 2018).

Fig. 4. The schematic diagram of the method for solving the neutron slowing-
down equation.

1) The energy grids are initialized and the neutron slowing-down equation is
discretized.

2) Based on the energy grids defined in Step 1, the point-point 0th energy
transfer moments are interpolated using the RESK interpolation tables.

3) The initial weighting flux is obtained by solving the neutron slowing-down
equation using the hyper-fine group method.

4) According to Eq. (27), the scattering sources of each energy interval are
evaluated by summing the scattering source of each nuclide. There may be 3
different types of energy transfer kernels according to different nuclides:
a) The energy transfer kernel for the nuclide is based on the RESK.
b) The energy transfer kernel for the nuclide is based on the asymptotic

kernel. The scattering source is calculated based on the analytical ex-
pression approximating that the flux and cross sections in the interval are
both linear.

c) If the energy intervals for scattering source calculations exceed the top
boundary, the scattering kernels for the all nuclides are set to be the
asymptotic kernel.

5) The iteration will exit if the point flux converges or the maximum number of
iterations is reached.
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3. Numerical results

The methods described in Section 2 are developed and implemented
into NECP-Atlas. NECP-Atlas is a newly developed nuclear data pro-
cessing code written in the language of FORTRAN 2008 with object-
oriented method. In order to research more accurate nuclear processing
methods conveniently, different processing functions are encapsulated
in different modules. All of the data processed by NECP-Atlas is based
on the ENDF/B-VII.1.

3.1. Numerical examples of RESK

Fig. 5 and Fig. 6 show the kernels of 235U at 6.0 eV and 6.8 eV. The
kernels of 238U at 6.52 eV and 7.2 eV are displayed in Fig. 7 and Fig. 8.
The results of 238Pu at 18.45 eV and 19.4 eV are also presented in Fig. 9
and Fig. 10. All of the results are calculated at 3 different temperatures
which are 300 K, 600 K and 1000 K, respectively. The results also show
that the kernels are effectively linearized. The squares, circles and tri-
angles in the figures are the reconstructed points by the linearization
algorithm.

Meanwhile, the first six Legendre moments of the kernels for 235U at

6.0 eV are shown in Fig. 11. Fig. 12 displays the first six Legendre
moments of the kernels for 238U at 6.52 eV and the first six Legendre
moments of the kernels for 238Pu at 18.45 eV are presented in Fig. 13.
All the kernels are evaluated at 1000 K.

3.2. Performance of the interpolation tables

The interpolation tables at 900 K are generated for 238U, 239Pu and
242Pu and they are used for interpolating the moments of 0th kernel.

First, the incident energy grid of the interpolation table for 238U is
generated and shown in Fig. 14 (1E-5 eV to 100 eV) and Fig. 15
(15 eV–25 eV). It can be seen that the energy points are much closer
around the resonance peaks. From 1E-5 eV to 100 eV, there are 870
points making up the incident energy grid of the interpolation table.
Around 20.87 eV (the second s-wave resonance of 238U), there are 172
points making up the incident energy grid of the interpolation table.
The incident energy grids are optimized according to positions where
the resonance peaks are located.

Then, by setting the calculated kernels as references, the kernel of
238U at 6.52 eV, the kernel of 239Pu at 0.15 eV and the kernel of 242Pu at

Fig. 5. The transfer kernel of 235U at various temperatures for neutrons of en-
ergy 6.0 eV.

Fig. 6. The transfer kernel of 235U at various temperatures for neutrons of en-
ergy 6.8 eV.

Fig. 7. The transfer kernel of 238U at various temperatures for neutrons of en-
ergy 6.52 eV.

Fig. 8. The transfer kernel of 238U at various temperatures for neutrons of en-
ergy 7.2 eV.
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Fig. 9. The transfer kernel of 238Pu at various temperatures for neutrons of
energy 18.45 eV.

Fig. 10. The transfer kernel of 238Pu at various temperatures for neutrons of
energy 19.4 eV.

Fig. 11. First six Legendre moments of the transfer kernel for 235U for neutrons
of energy 6.5 eV at 1000 K.

Fig. 12. First six Legendre moments of the transfer kernel for 238U for neutrons
of energy 6.52 eV at 1000 K.

Fig. 13. First six Legendre moments of the transfer kernel for 238Pu for neutrons
of energy 18.45 eV at 1000 K.

Fig. 14. Incident energy grid (1E-5 eV - 100 eV) for 238U at 900 K.
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2.63 eV are compared. The comparison results between interpolated
values and calculated values are shown in Fig. 16, Fig. 17 and Fig. 18,
respectively. The interpolated values match well with the calculated
values for 238U, 239Pu and 242Pu. The maximum errors are 0.47%,
0.08% and 2.41%, respectively.

3.3. Performance of the neutron slowing-down equation solver considering
the neutron up-scattering

Two infinite homogeneous systems at 900 K consisting 238U and 1H
are designed. The background cross sections of 238U in the system are
100 b and 1000 b, respectively. The neutron slowing-down equation is
solved from 100 eV to 0.1 eV based on the RESK and the asymptotic
kernel, respectively. The flux and absorption reaction rates based on the
different kernels are displayed. Figs. 19 and 20 show the results around
the 238U 36.68 eV resonance for different dilutions.

The shapes of the neutron flux and absorption rates change greatly
around the resonance peak due to the difference of the kernels. With the
RESK, the absorption reaction rates increase more when the dilute cross
sections decrease. . It needs 5.58 s to perform the whole solving pro-
cedure including one time of initialization and two times of flux

Fig. 15. Incident energy grid (15 eV - 25 eV) for 238U at 900 K.

Fig. 16. The comparison of the transfer kernel of 238U at 6.52 eV.

Fig. 17. The comparison of the transfer kernel of 239U at 0.15 eV.

Fig. 18. The comparison of the transfer kernel of 242Pu at 2.63 eV.

Fig. 19. Neutron spectrum and absorption reaction rate at background cross
section 100 b (238U resonance at 36.68 eV).
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calculations. For one temperature, only one time of initialization is
required for all flux calculations, which takes 5.42 s. The flux calcula-
tions take a little computation time. The computation platform is Intel
i7-7700 @ 3.60 GHz.

3.4. Verifications of Doppler benchmark calculation

The Mosteller Doppler benchmark (Mosteller, 2006) is calculated by
DRAGON5 (Marleau et al., 2014) based on the EPRI-CPM 69 group
structure multi-group libraries in WIMS-D4 format generated by NECP-
Atlas. Two kinds of multi-group libraries are generated considering the
RESK and the asymptotic kernel, respectively. For the libraries with
RESK considered, the RESK is applied to all the heavy nuclides.

The results of eigenvalue and Doppler fuel temperature coefficients
(FTC) at 600 K (HZP) and 900 K (HFP) based on two different multi-
group libraries are compared and summarized in Tables 1-3.

The eigenvalues and Doppler fuel coefficients are influenced greatly
as a result of the rising of the absorption reaction rates. About 8–10%
improvement of the Doppler fuel coefficients is made based on the
RESK and the eigenvalues are overestimated about 100–200 pcm at
HFP in the Mosteller Doppler benchmark calculations. The results in
Table 1 match with the observation of other researchers (Lee et al.,
2008; Ouisloumen et al., 2015). The results in Tables 2 and 3 also agree
with conclusions of other researchers (Ghrayeb, S. Z. et al., 2014;
Ouisloumen et al., 2015).

4. Conclusion

Several efforts have been made to get more accurate multi-group
cross sections and scattering matrices. Firstly, a semi-analytical in-
tegration method is adopted to evaluate the RESK precisely. An algo-
rithm combining the RESK calculation is proposed to generate a two-
dimensional interpolation table to obtain the RESK correctly and effi-
ciently. The results shows that the incident energy grids of interpolation
tables can be optimized and the interpolated values can match with the
calculated values. Secondly, a neutron slowing-down equation solver is
developed based on the RESK to provide accurate weighting flux for the
multi-group collapsing calculations, which can avoid the error caused
by the asymptotic kernel. The multi-group cross sections or scattering
matrices for arbitrary group structures can be generated precisely and
efficiently. The proposed methods have been implemented into a newly
developed nuclear data processing code NECP-Atlas. The numerical
tests show that the results of Mosteller Doppler benchmark are im-
proved when the multi-group cross sections generated by NECP-Atlas
are used in the calculations.

It can be observed that the eigenvalues of all cases decrease when
the RESK is applied. The reason is that more neutrons are scattered into
resonance peaks and the absorption reaction rates increase. It is worth
noting that the conventional reactor analysis methods based on the
asymptotic kernel underestimate another key parameter of reactors (i.e.
fuel temperature coefficients). For example, in the control rod ejection
accidents, the ejection leads that the core temperature rise. Therefore,
the negative feedback effect based on the RESK is more strong com-
pared with that based on the asymptotic kernel. Similarly, for other
situations where temperature changes significantly, it is crucial to take
into account the impact caused by the RESK.

Acknowledgement

This work was supported by The National Natural Science
Foundation of China (No. 11605128), Science Challenge Program (No.
JCKY2016212A502) and Fundamental Research Funds for the Central
University (xjj2015047).

Fig. 20. Neutron spectrum and absorption rate at background cross section
1000 b (238U resonance at 36.68 eV).

Table 1
Eigenvalues and fuel temperature coefficients for the Mosteller UOX fuel
benchmark.

UO2 (wt.
%)

k (asymptotic kernel) k (RESK) FTC diff
(%)

HZP HFP FTC HZP HFP FTC

0.71 0.66656 0.66076 −4.39 0.66631 0.65991 −4.85 −10.5
1.60 0.96140 0.95291 −3.09 0.96105 0.95169 −3.41 −10.4
2.40 1.09918 1.08953 −2.69 1.09879 1.08816 −2.96 −10.3
3.10 1.17679 1.16653 −2.49 1.17639 1.16509 −2.75 −10.3
3.90 1.23902 1.22831 −2.35 1.23861 1.22683 −2.58 −10.2
4.50 1.27416 1.26321 −2.27 1.27376 1.26171 −2.50 −10.2
5.00 1.29831 1.28719 −2.22 1.29790 1.28569 −2.44 −10.0

Table 2
Eigenvalues and fuel temperature coefficients for the Mosteller Reactor-Recycle
MOX fuel benchmark.

PuO2 (wt.
%)

k (asymptotic kernel) k (RESK) FTC diff
(%)

HZP HFP FTC HZP HFP FTC

1.00 0.94611 0.93574 −3.90 0.94554 0.93420 −4.28 −9.6
2.00 1.02198 1.01053 −3.70 1.02130 1.00883 −4.03 −9.2
4.00 1.07645 1.06435 −3.52 1.07582 1.06268 −3.83 −8.8
6.00 1.10585 1.09343 −3.42 1.10517 1.09177 −3.70 −8.1
8.00 1.13016 1.11766 −3.30 1.12945 1.11600 −3.56 −7.8

Table 3
Eigenvalues and fuel temperature coefficients for the Mosteller Weapon-Grade
MOX fuel benchmark.

PuO2

(wt. %)
k (asymptotic kernel) k (RESK) FTC diff

(%)
HZP HFP FTC HZP HFP FTC

1.00 1.09023 1.07993 −2.92 1.08968 1.07837 −3.21 −10.0
2.00 1.18164 1.16969 −2.88 1.18096 1.16791 −3.15 −9.4
4.00 1.25102 1.23801 −2.80 1.25024 1.23611 −3.05 −8.8
6.00 1.28781 1.27453 −2.70 1.28701 1.27264 −2.92 −8.4
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